Goto

Collaborating Authors

Oh, Songhwai



Maximum Causal Tsallis Entropy Imitation Learning

Neural Information Processing Systems

In this paper, we propose a novel maximum causal Tsallis entropy (MCTE) framework for imitation learning which can efficiently learn a sparse multi-modal policy distribution from demonstrations. We provide the full mathematical analysis of the proposed framework. First, the optimal solution of an MCTE problem is shown to be a sparsemax distribution, whose supporting set can be adjusted. The proposed method has advantages over a softmax distribution in that it can exclude unnecessary actions by assigning zero probability. Second, we prove that an MCTE problem is equivalent to robust Bayes estimation in the sense of the Brier score.


Generative Autoregressive Networks for 3D Dancing Move Synthesis from Music

arXiv.org Machine Learning

-- This paper proposes a framework which is able to generate a sequence of three-dimensional human dance poses for a given music. The proposed framework consists of three components: a music feature encoder, a pose generator, and a music genre classifier . We focus on integrating these components for generating a realistic 3D human dancing move from music, which can be applied to artificial agents and humanoid robots. The trained dance pose generator, which is a generative autoregressive model, is able to synthesize a dance sequence longer than 5,000 pose frames. Experimental results of generated dance sequences from various songs show how the proposed method generates humanlike dancing move to a given music. In addition, a generated 3D dance sequence is applied to a humanoid robot, showing that the proposed framework can make a robot to dance just by listening to music. Dance is one of the most important form of performing arts that having been emerged in all known cultures. As one of the specific subcategory of under theatrical dance, choreography associated with music is also one of the most popular forms that have usually been designed and physically performed by professional choreographers.


Tsallis Reinforcement Learning: A Unified Framework for Maximum Entropy Reinforcement Learning

arXiv.org Machine Learning

In this paper, we present a new class of Markov decision processes (MDPs), called Tsallis MDPs, with Tsallis entropy maximization, which generalizes existing maximum entropy reinforcement learning (RL). A Tsallis MDP provides a unified framework for the original RL problem and RL with various types of entropy, including the well-known standard Shannon-Gibbs (SG) entropy, using an additional real-valued parameter, called an entropic index. By controlling the entropic index, we can generate various types of entropy, including the SG entropy, and a different entropy results in a different class of the optimal policy in Tsallis MDPs. We also provide a full mathematical analysis of Tsallis MDPs, including the optimality condition, performance error bounds, and convergence. Our theoretical result enables us to use any positive entropic index in RL. To handle complex and large-scale problems, we propose a model-free actor-critic RL method using Tsallis entropy maximization. We evaluate the regularization effect of the Tsallis entropy with various values of entropic indices and show that the entropic index controls the exploration tendency of the proposed method. For a different type of RL problems, we find that a different value of the entropic index is desirable. The proposed method is evaluated using the MuJoCo simulator and achieves the state-of-the-art performance.


Maximum Causal Tsallis Entropy Imitation Learning

Neural Information Processing Systems

In this paper, we propose a novel maximum causal Tsallis entropy (MCTE) framework for imitation learning which can efficiently learn a sparse multi-modal policy distribution from demonstrations. We provide the full mathematical analysis of the proposed framework. First, the optimal solution of an MCTE problem is shown to be a sparsemax distribution, whose supporting set can be adjusted. The proposed method has advantages over a softmax distribution in that it can exclude unnecessary actions by assigning zero probability. Second, we prove that an MCTE problem is equivalent to robust Bayes estimation in the sense of the Brier score. Third, we propose a maximum causal Tsallis entropy imitation learning (MCTEIL) algorithm with a sparse mixture density network (sparse MDN) by modeling mixture weights using a sparsemax distribution. In particular, we show that the causal Tsallis entropy of an MDN encourages exploration and efficient mixture utilization while Boltzmann Gibbs entropy is less effective. We validate the proposed method in two simulation studies and MCTEIL outperforms existing imitation learning methods in terms of average returns and learning multi-modal policies.


Maximum Causal Tsallis Entropy Imitation Learning

Neural Information Processing Systems

In this paper, we propose a novel maximum causal Tsallis entropy (MCTE) framework for imitation learning which can efficiently learn a sparse multi-modal policy distribution from demonstrations. We provide the full mathematical analysis of the proposed framework. First, the optimal solution of an MCTE problem is shown to be a sparsemax distribution, whose supporting set can be adjusted. The proposed method has advantages over a softmax distribution in that it can exclude unnecessary actions by assigning zero probability. Second, we prove that an MCTE problem is equivalent to robust Bayes estimation in the sense of the Brier score. Third, we propose a maximum causal Tsallis entropy imitation learning (MCTEIL) algorithm with a sparse mixture density network (sparse MDN) by modeling mixture weights using a sparsemax distribution. In particular, we show that the causal Tsallis entropy of an MDN encourages exploration and efficient mixture utilization while Boltzmann Gibbs entropy is less effective. We validate the proposed method in two simulation studies and MCTEIL outperforms existing imitation learning methods in terms of average returns and learning multi-modal policies.


Sparse Markov Decision Processes with Causal Sparse Tsallis Entropy Regularization for Reinforcement Learning

arXiv.org Machine Learning

In this paper, a sparse Markov decision process (MDP) with novel causal sparse Tsallis entropy regularization is proposed.The proposed policy regularization induces a sparse and multi-modal optimal policy distribution of a sparse MDP. The full mathematical analysis of the proposed sparse MDP is provided.We first analyze the optimality condition of a sparse MDP. Then, we propose a sparse value iteration method which solves a sparse MDP and then prove the convergence and optimality of sparse value iteration using the Banach fixed point theorem. The proposed sparse MDP is compared to soft MDPs which utilize causal entropy regularization. We show that the performance error of a sparse MDP has a constant bound, while the error of a soft MDP increases logarithmically with respect to the number of actions, where this performance error is caused by the introduced regularization term. In experiments, we apply sparse MDPs to reinforcement learning problems. The proposed method outperforms existing methods in terms of the convergence speed and performance.


Uncertainty-Aware Learning from Demonstration using Mixture Density Networks with Sampling-Free Variance Modeling

arXiv.org Artificial Intelligence

In this paper, we propose an uncertainty-aware learning from demonstration method by presenting a novel uncertainty estimation method utilizing a mixture density network appropriate for modeling complex and noisy human behaviors. The proposed uncertainty acquisition can be done with a single forward path without Monte Carlo sampling and is suitable for real-time robotics applications. The properties of the proposed uncertainty measure are analyzed through three different synthetic examples, absence of data, heavy measurement noise, and composition of functions scenarios. We show that each case can be distinguished using the proposed uncertainty measure and presented an uncertainty-aware learn- ing from demonstration method of an autonomous driving using this property. The proposed uncertainty-aware learning from demonstration method outperforms other compared methods in terms of safety using a complex real-world driving dataset.