O'Malley, Daniel
Model-Agnostic Knowledge Guided Correction for Improved Neural Surrogate Rollout
Srikishan, Bharat, O'Malley, Daniel, Mehana, Mohamed, Lubbers, Nicholas, Muralidhar, Nikhil
Modeling the evolution of physical systems is critical to many applications in science and engineering. As the evolution of these systems is governed by partial differential equations (PDEs), there are a number of computational simulations which resolve these systems with high accuracy. However, as these simulations incur high computational costs, they are infeasible to be employed for large-scale analysis. A popular alternative to simulators are neural network surrogates which are trained in a data-driven manner and are much more computationally efficient. However, these surrogate models suffer from high rollout error when used autoregressively, especially when confronted with training data paucity. Existing work proposes to improve surrogate rollout error by either including physical loss terms directly in the optimization of the model or incorporating computational simulators as'differentiable layers' in the neural network. Both of these approaches have their challenges, with physical loss functions suffering from slow convergence for stiff PDEs and simulator layers requiring gradients which are not always available, especially in legacy simulators. We propose the Hybrid PDE Predictor with Reinforcement Learning (HyPER) model: a modelagnostic, RL based, cost-aware model which combines a neural surrogate, RL decision model, and a physics simulator (with or without gradients) to reduce surrogate rollout error significantly. In addition to reducing in-distribution rollout error by 47%-78%, HyPER learns an intelligent policy that is adaptable to changing physical conditions and resistant to noise corruption. Scientific simulations have been the workhorse enabling novel discoveries across many scientific disciplines. However, executing fine-grained simulations of a scientific process of interest is a costly undertaking requiring large computational resources and long execution times.
Benchmarking Large Language Models with Integer Sequence Generation Tasks
O'Malley, Daniel, Bhattarai, Manish, Santos, Javier
This paper presents a novel benchmark where the large language model (LLM) must write code that computes integer sequences from the Online Encyclopedia of Integer Sequences (OEIS), a widely-used resource for mathematical sequences. The benchmark is designed to evaluate both the correctness of the generated code and its computational efficiency. Our benchmark reveals that the o1 series of models outperform other frontier models from OpenAI, Anthropic, Meta, and Google in accuracy and cheating rates across both easy and hard integer sequences. In order to ensure models do not exploit memorized sequence values, we introduce an automated cheating detection mechanism that flags the use of lookup tables and validated this automation against human cheating evaluations. This benchmark provides a meaningful challenge for current LLMs, offering insights into their mathematical reasoning and code writing capabilities, which can guide future research directions and model development in mathematical reasoning and code synthesis.
Learning the Factors Controlling Mineralization for Geologic Carbon Sequestration
Pachalieva, Aleksandra, Hyman, Jeffrey D., O'Malley, Daniel, Viswanathan, Hari, Srinivasan, Gowri
We perform a set of flow and reactive transport simulations within three-dimensional fracture networks to learn the factors controlling mineral reactions. CO$_2$ mineralization requires CO$_2$-laden water, dissolution of a mineral that then leads to precipitation of a CO$_2$-bearing mineral. Our discrete fracture networks (DFN) are partially filled with quartz that gradually dissolves until it reaches a quasi-steady state. At the end of the simulation, we measure the quartz remaining in each fracture within the domain. We observe that a small backbone of fracture exists, where the quartz is fully dissolved which leads to increased flow and transport. However, depending on the DFN topology and the rate of dissolution, we observe a large variability of these changes, which indicates an interplay between the fracture network structure and the impact of geochemical dissolution. In this work, we developed a machine learning framework to extract the important features that support mineralization in the form of dissolution. In addition, we use structural and topological features of the fracture network to predict the remaining quartz volume in quasi-steady state conditions. As a first step to characterizing carbon mineralization, we study dissolution with this framework. We studied a variety of reaction and fracture parameters and their impact on the dissolution of quartz in fracture networks. We found that the dissolution reaction rate constant of quartz and the distance to the flowing backbone in the fracture network are the two most important features that control the amount of quartz left in the system. For the first time, we use a combination of a finite-volume reservoir model and graph-based approach to study reactive transport in a complex fracture network to determine the key features that control dissolution.
Reconstruction of Fields from Sparse Sensing: Differentiable Sensor Placement Enhances Generalization
Marcato, Agnese, O'Malley, Daniel, Viswanathan, Hari, Guiltinan, Eric, Santos, Javier E.
Recreating complex, high-dimensional global fields from limited data points is a grand challenge across various scientific and industrial domains. Given the prohibitive costs of specialized sensors and the frequent inaccessibility of certain regions of the domain, achieving full field coverage is typically not feasible. Therefore, the development of algorithms that intelligently improve sensor placement is of significant value. In this study, we introduce a general approach that employs differentiable programming to exploit sensor placement within the training of a neural network model in order to improve field reconstruction. We evaluated our method using two distinct datasets; the results show that our approach improved test scores. Ultimately, our method of differentiable placement strategies has the potential to significantly increase data collection efficiency, enable more thorough area coverage, and reduce redundancy in sensor deployment.
Reduced order modeling for flow and transport problems with Barlow Twins self-supervised learning
Kadeethum, Teeratorn, Ballarin, Francesco, O'Malley, Daniel, Choi, Youngsoo, Bouklas, Nikolaos, Yoon, Hongkyu
We propose a unified data-driven reduced order model (ROM) that bridges the performance gap between linear and nonlinear manifold approaches. Deep learning ROM (DL-ROM) using deep-convolutional autoencoders (DC-AE) has been shown to capture nonlinear solution manifolds but fails to perform adequately when linear subspace approaches such as proper orthogonal decomposition (POD) would be optimal. Besides, most DL-ROM models rely on convolutional layers, which might limit its application to only a structured mesh. The proposed framework in this study relies on the combination of an autoencoder (AE) and Barlow Twins (BT) self-supervised learning, where BT maximizes the information content of the embedding with the latent space through a joint embedding architecture. Through a series of benchmark problems of natural convection in porous media, BT-AE performs better than the previous DL-ROM framework by providing comparable results to POD-based approaches for problems where the solution lies within a linear subspace as well as DL-ROM autoencoder-based techniques where the solution lies on a nonlinear manifold; consequently, bridges the gap between linear and nonlinear reduced manifolds. We illustrate that a proficient construction of the latent space is key to achieving these results, enabling us to map these latent spaces using regression models. The proposed framework achieves a relative error of 2% on average and 12% in the worst-case scenario (i.e., the training data is small, but the parameter space is large.).
Reverse Annealing for Nonnegative/Binary Matrix Factorization
Golden, John, O'Malley, Daniel
It was recently shown that quantum annealing can be used as an effective, fast subroutine in certain types of matrix factorization algorithms. The quantum annealing algorithm performed best for quick, approximate answers, but performance rapidly plateaued. In this paper, we utilize reverse annealing instead of forward annealing in the quantum annealing subroutine for nonnegative/binary matrix factorization problems. After an initial global search with forward annealing, reverse annealing performs a series of local searches that refine existing solutions. The combination of forward and reverse annealing significantly improves performance compared to forward annealing alone for all but the shortest run times.
Nonnegative/binary matrix factorization with a D-Wave quantum annealer
O'Malley, Daniel, Vesselinov, Velimir V., Alexandrov, Boian S., Alexandrov, Ludmil B.
D-Wave quantum annealers represent a novel computational architecture and have attracted significant interest, but have been used for few real-world computations. Machine learning has been identified as an area where quantum annealing may be useful. Here, we show that the D-Wave 2X can be effectively used as part of an unsupervised machine learning method. This method can be used to analyze large datasets. The D-Wave only limits the number of features that can be extracted from the dataset. We apply this method to learn the features from a set of facial images.