O'Briain, Teaghan
Cycle-StarNet: Bridging the gap between theory and data by leveraging large datasets
O'Briain, Teaghan, Ting, Yuan-Sen, Fabbro, Sébastien, Yi, Kwang M., Venn, Kim, Bialek, Spencer
The advancements in stellar spectroscopy data acquisition have made it necessary to accomplish similar improvements in efficient data analysis techniques. Current automated methods for analyzing spectra are either (a) data-driven, which requires prior knowledge of stellar parameters and elemental abundances, or (b) based on theoretical synthetic models that are susceptible to the gap between theory and practice. In this study, we present a hybrid generative domain adaptation method that turns simulated stellar spectra into realistic spectra by applying unsupervised learning to large spectroscopic surveys. We apply our technique to the APOGEE H-band spectra at R=22,500 and the Kurucz synthetic models. As a proof of concept, two case studies are presented. The first of which is the calibration of synthetic data to become consistent with observations. To accomplish this, synthetic models are morphed into spectra that resemble observations, thereby reducing the gap between theory and observations. Fitting the observed spectra shows an improved average reduced $\chi_R^2$ from 1.97 to 1.22, along with a reduced mean residual from 0.16 to -0.01 in normalized flux. The second case study is the identification of the elemental source of missing spectral lines in the synthetic modelling. A mock dataset is used to show that absorption lines can be recovered when they are absent in one of the domains. This method can be applied to other fields, which use large data sets and are currently limited by modelling accuracy. The code used in this study is made publicly available on github.
Interpreting Stellar Spectra with Unsupervised Domain Adaptation
O'Briain, Teaghan, Ting, Yuan-Sen, Fabbro, Sébastien, Yi, Kwang M., Venn, Kim, Bialek, Spencer
We discuss how to achieve mapping from large sets of imperfect simulations and observational data with unsupervised domain adaptation. Under the hypothesis that simulated and observed data distributions share a common underlying representation, we show how it is possible to transfer between simulated and observed domains. Driven by an application to interpret stellar spectroscopic sky surveys, we construct the domain transfer pipeline from two adversarial autoencoders on each domains with a disentangling latent space, and a cycle-consistency constraint. We then construct a differentiable pipeline from physical stellar parameters to realistic observed spectra, aided by a supplementary generative surrogate physics emulator network. We further exemplify the potential of the method on the reconstructed spectra quality and to discover new spectral features associated to elemental abundances.