Plotting

 Niles-Weed, Jonathan


Trajectory Inference with Smooth Schr\"odinger Bridges

arXiv.org Machine Learning

Motivated by applications in trajectory inference and particle tracking, we introduce Smooth Schr\"odinger Bridges. Our proposal generalizes prior work by allowing the reference process in the Schr\"odinger Bridge problem to be a smooth Gaussian process, leading to more regular and interpretable trajectories in applications. Though na\"ively smoothing the reference process leads to a computationally intractable problem, we identify a class of processes (including the Mat\'ern processes) for which the resulting Smooth Schr\"odinger Bridge problem can be lifted to a simpler problem on phase space, which can be solved in polynomial time. We develop a practical approximation of this algorithm that outperforms existing methods on numerous simulated and real single-cell RNAseq datasets. The code can be found at https://github.com/WanliHongC/Smooth_SB


Conditional simulation via entropic optimal transport: Toward non-parametric estimation of conditional Brenier maps

arXiv.org Machine Learning

Conditional simulation is a fundamental task in statistical modeling: Generate samples from the conditionals given finitely many data points from a joint distribution. One promising approach is to construct conditional Brenier maps, where the components of the map pushforward a reference distribution to conditionals of the target. While many estimators exist, few, if any, come with statistical or algorithmic guarantees. To this end, we propose a non-parametric estimator for conditional Brenier maps based on the computational scalability of \emph{entropic} optimal transport. Our estimator leverages a result of Carlier et al. (2010), which shows that optimal transport maps under a rescaled quadratic cost asymptotically converge to conditional Brenier maps; our estimator is precisely the entropic analogues of these converging maps. We provide heuristic justifications for choosing the scaling parameter in the cost as a function of the number of samples by fully characterizing the Gaussian setting. We conclude by comparing the performance of the estimator to other machine learning and non-parametric approaches on benchmark datasets and Bayesian inference problems.


Progressive Entropic Optimal Transport Solvers

arXiv.org Machine Learning

Optimal transport (OT) has profoundly impacted machine learning by providing theoretical and computational tools to realign datasets. In this context, given two large point clouds of sizes $n$ and $m$ in $\mathbb{R}^d$, entropic OT (EOT) solvers have emerged as the most reliable tool to either solve the Kantorovich problem and output a $n\times m$ coupling matrix, or to solve the Monge problem and learn a vector-valued push-forward map. While the robustness of EOT couplings/maps makes them a go-to choice in practical applications, EOT solvers remain difficult to tune because of a small but influential set of hyperparameters, notably the omnipresent entropic regularization strength $\varepsilon$. Setting $\varepsilon$ can be difficult, as it simultaneously impacts various performance metrics, such as compute speed, statistical performance, generalization, and bias. In this work, we propose a new class of EOT solvers (ProgOT), that can estimate both plans and transport maps. We take advantage of several opportunities to optimize the computation of EOT solutions by dividing mass displacement using a time discretization, borrowing inspiration from dynamic OT formulations, and conquering each of these steps using EOT with properly scheduled parameters. We provide experimental evidence demonstrating that ProgOT is a faster and more robust alternative to standard solvers when computing couplings at large scales, even outperforming neural network-based approaches. We also prove statistical consistency of our approach for estimating optimal transport maps.


The Adversarial Consistency of Surrogate Risks for Binary Classification

arXiv.org Artificial Intelligence

We study the consistency of surrogate risks for robust binary classification. It is common to learn robust classifiers by adversarial training, which seeks to minimize the expected $0$-$1$ loss when each example can be maliciously corrupted within a small ball. We give a simple and complete characterization of the set of surrogate loss functions that are \emph{consistent}, i.e., that can replace the $0$-$1$ loss without affecting the minimizing sequences of the original adversarial risk, for any data distribution. We also prove a quantitative version of adversarial consistency for the $\rho$-margin loss. Our results reveal that the class of adversarially consistent surrogates is substantially smaller than in the standard setting, where many common surrogates are known to be consistent.


Existence and Minimax Theorems for Adversarial Surrogate Risks in Binary Classification

arXiv.org Artificial Intelligence

Adversarial training is one of the most popular methods for training methods robust to adversarial attacks, however, it is not well-understood from a theoretical perspective. We prove and existence, regularity, and minimax theorems for adversarial surrogate risks. Our results explain some empirical observations on adversarial robustness from prior work and suggest new directions in algorithm development. Furthermore, our results extend previously known existence and minimax theorems for the adversarial classification risk to surrogate risks.


Learning Costs for Structured Monge Displacements

arXiv.org Artificial Intelligence

Optimal transport theory has provided machine learning with several tools to infer a push-forward map between densities from samples. While this theory has recently seen tremendous methodological developments in machine learning, its practical implementation remains notoriously difficult, because it is plagued by both computational and statistical challenges. Because of such difficulties, existing approaches rarely depart from the default choice of estimating such maps with the simple squared-Euclidean distance as the ground cost, $c(x,y)=\|x-y\|^2_2$. We follow a different path in this work, with the motivation of \emph{learning} a suitable cost structure to encourage maps to transport points along engineered features. We extend the recently proposed Monge-Bregman-Occam pipeline~\citep{cuturi2023monge}, that rests on an alternative cost formulation that is also cost-invariant $c(x,y)=h(x-y)$, but which adopts a more general form as $h=\tfrac12 \ell_2^2+\tau$, where $\tau$ is an appropriately chosen regularizer. We first propose a method that builds upon proximal gradient descent to generate ground truth transports for such structured costs, using the notion of $h$-transforms and $h$-concave potentials. We show more generally that such a method can be extended to compute $h$-transforms for entropic potentials. We study a regularizer that promotes transport displacements in low-dimensional spaces, and propose to learn such a basis change using Riemannian gradient descent on the Stiefel manifold. We show that these changes lead to estimators that are more robust and easier to interpret.


Perturbation Analysis of Neural Collapse

arXiv.org Artificial Intelligence

Training deep neural networks for classification often includes minimizing the training loss beyond the zero training error point. In this phase of training, a "neural collapse" behavior has been observed: the variability of features (outputs of the penultimate layer) of within-class samples decreases and the mean features of different classes approach a certain tight frame structure. Recent works analyze this behavior via idealized unconstrained features models where all the minimizers exhibit exact collapse. However, with practical networks and datasets, the features typically do not reach exact collapse, e.g., because deep layers cannot arbitrarily modify intermediate features that are far from being collapsed. In this paper, we propose a richer model that can capture this phenomenon by forcing the features to stay in the vicinity of a predefined features matrix (e.g., intermediate features). We explore the model in the small vicinity case via perturbation analysis and establish results that cannot be obtained by the previously studied models. For example, we prove reduction in the within-class variability of the optimized features compared to the predefined input features (via analyzing gradient flow on the "central-path" with minimal assumptions), analyze the minimizers in the near-collapse regime, and provide insights on the effect of regularization hyperparameters on the closeness to collapse. We support our theory with experiments in practical deep learning settings.


Minimax estimation of discontinuous optimal transport maps: The semi-discrete case

arXiv.org Machine Learning

We consider the problem of estimating the optimal transport map between two probability distributions, $P$ and $Q$ in $\mathbb R^d$, on the basis of i.i.d. samples. All existing statistical analyses of this problem require the assumption that the transport map is Lipschitz, a strong requirement that, in particular, excludes any examples where the transport map is discontinuous. As a first step towards developing estimation procedures for discontinuous maps, we consider the important special case where the data distribution $Q$ is a discrete measure supported on a finite number of points in $\mathbb R^d$. We study a computationally efficient estimator initially proposed by Pooladian and Niles-Weed (2021), based on entropic optimal transport, and show in the semi-discrete setting that it converges at the minimax-optimal rate $n^{-1/2}$, independent of dimension. Other standard map estimation techniques both lack finite-sample guarantees in this setting and provably suffer from the curse of dimensionality. We confirm these results in numerical experiments, and provide experiments for other settings, not covered by our theory, which indicate that the entropic estimator is a promising methodology for other discontinuous transport map estimation problems.


The Consistency of Adversarial Training for Binary Classification

arXiv.org Artificial Intelligence

Robustness to adversarial perturbations is of paramount concern in modern machine learning. One of the state-of-the-art methods for training robust classifiers is adversarial training, which involves minimizing a supremum-based surrogate risk. The statistical consistency of surrogate risks is well understood in the context of standard machine learning, but not in the adversarial setting. In this paper, we characterize which supremum-based surrogates are consistent for distributions absolutely continuous with respect to Lebesgue measure in binary classification. Furthermore, we obtain quantitative bounds relating adversarial surrogate risks to the adversarial classification risk. Lastly, we discuss implications for the $\cH$-consistency of adversarial training.


Estimation and inference for the Wasserstein distance between mixing measures in topic models

arXiv.org Machine Learning

The Wasserstein distance between mixing measures has come to occupy a central place in the statistical analysis of mixture models. This work proposes a new canonical interpretation of this distance and provides tools to perform inference on the Wasserstein distance between mixing measures in topic models. We consider the general setting of an identifiable mixture model consisting of mixtures of distributions from a set $\mathcal{A}$ equipped with an arbitrary metric $d$, and show that the Wasserstein distance between mixing measures is uniquely characterized as the most discriminative convex extension of the metric $d$ to the set of mixtures of elements of $\mathcal{A}$. The Wasserstein distance between mixing measures has been widely used in the study of such models, but without axiomatic justification. Our results establish this metric to be a canonical choice. Specializing our results to topic models, we consider estimation and inference of this distance. Though upper bounds for its estimation have been recently established elsewhere, we prove the first minimax lower bounds for the estimation of the Wasserstein distance in topic models. We also establish fully data-driven inferential tools for the Wasserstein distance in the topic model context. Our results apply to potentially sparse mixtures of high-dimensional discrete probability distributions. These results allow us to obtain the first asymptotically valid confidence intervals for the Wasserstein distance in topic models.