Goto

Collaborating Authors

 Nikolova, Evdokia


Eliciting Information with Partial Signals in Repeated Games

arXiv.org Artificial Intelligence

We consider an information elicitation game where the center needs the agent to self-report her actual usage of a service and charges her a payment accordingly. The center can only observe a partial signal, representing part of the agent's true consumption, that is generated randomly from a publicly known distribution. The agent can report any information, as long as it does not contradict the signal, and the center issues a payment based on the reported information. Such problems find application in prosumer pricing, tax filing, etc., when the agent's actual consumption of a service is masked from the center and verification of the submitted reports is impractical. The key difference between the current problem and classic information elicitation problems is that the agent gets to observe the full signal and act strategically, but the center can only see the partial signal. For this seemingly impossible problem, we propose a penalty mechanism that elicits truthful self-reports in a repeated game. In particular, besides charging the agent the reported value, the mechanism charges a penalty proportional to her inconsistent reports. We show how a combination of the penalty rate and the length of the game incentivizes the agent to be truthful for the entire game, a phenomenon we call "fear of tomorrow verification". We show how approximate results for arbitrary distributions can be obtained by analyzing Bernoulli distributions. We extend our mechanism to a multi-agent cost sharing setting and give equilibrium results.


Computing Multi-Modal Journey Plans under Uncertainty

Journal of Artificial Intelligence Research

Multi-modal journey planning, which allows multiple types of transport within a single trip, is becoming increasingly popular, due to a strong practical interest and an increasing availability of data. In real life, transport networks feature uncertainty. Yet, most approaches assume a deterministic environment, making plans more prone to failures such as missed connections and major delays in the arrival. This paper presents an approach to computing optimal contingent plans in multi-modal journey planning. The problem is modeled as a search in an and/or state space. We describe search enhancements used on top of the AO* algorithm. Enhancements include admissible heuristics, multiple types of pruning that preserve the completeness and the optimality, and a hybrid search approach with a deterministic and a nondeterministic search. We demonstrate an NP-hardness result, with the hardness stemming from the dynamically changing distributions of the travel time random variables. We perform a detailed empirical analysis on realistic transport networks from cities such as Montpellier, Rome and Dublin. The results demonstrate the effectiveness of our algorithmic contributions, and the benefits of contingent plans as compared to standard sequential plans, when the arrival and departure times of buses are characterized by uncertainty.


Maximizing Non-Monotone DR-Submodular Functions with Cardinality Constraints

arXiv.org Artificial Intelligence

We consider the problem of maximizing a non-monotone DR-submodular function subject to a cardinality constraint. Diminishing returns (DR) submodularity is a generalization of the diminishing returns property for functions defined over the integer lattice. This generalization can be used to solve many machine learning or combinatorial optimization problems such as optimal budget allocation, revenue maximization, etc. In this work we propose the first polynomial-time approximation algorithms for non-monotone constrained maximization. We implement our algorithms for a revenue maximization problem with a real-world dataset to check their efficiency and performance.


Approximation Algorithms for Route Planning with Nonlinear Objectives

AAAI Conferences

We consider optimal route planning when the objective function is a general nonlinear and non-monotonic function. Such an objective models user behavior more accurately, for example, when a user is risk-averse, or the utility function needs to capture a penalty for early arrival. It is known that as non-linearity arises, the problem can become NP-hard and little is known on computing optimal solutions when in addition there is no monotonicity guarantee. We show that an approximately optimal non-simple path can be efficiently computed under some natural constraints. In particular, we provide a fully polynomial approximation scheme under hop constraints. Our approximation algorithm can extend to run in pseudo-polynomial time under an additional linear constraint that sometimes is useful. As a by-product, we show that our algorithm can be applied to the problem of finding a path that is most likely to be on time for a given deadline.


Approximately Optimal Risk-Averse Routing Policies via Adaptive Discretization

AAAI Conferences

Mitigating risk in decision-making has been a long-standing problem. Due to the mathematical challenge of its nonlinear nature, especially in adaptive decision-making problems, finding optimal policies is typically intractable. With a focus on efficient algorithms, we ask how well we can approximate the optimal policies for the difficult case of general utility models of risk. Little is known about efficient algorithms beyond the very special cases of linear (risk-neutral) and exponential utilities since general utilities are not separable and preclude the use of traditional dynamic programming techniques. In this paper, we consider general utility functions and investigate efficient computation of approximately optimal routing policies, where the goal is to maximize the expected utility of arriving at a destination around a given deadline. We present an adaptive discretization variant of successive approximation which gives an $\error$-optimal policy in polynomial time. The main insight is to perform discretization at the utility level space, which results in a nonuniform discretization of the domain, and applies for any monotone utility function.


Multi-Modal Journey Planning in the Presence of Uncertainty

AAAI Conferences

Multi-modal journey planning, which allows multiple types of transport within a single trip, is becoming increasingly popular, due to a strong practical interest and an increasing availability of data. In real life, transport networks feature uncertainty. Yet, most approaches assume a deterministic environment, making plans more prone to failures such as major delays in the arrival. We model the scenario as a non-deterministic planning problem with continuous time and time-dependent probabilities of non-deterministic effects. We present new hardness results. We introduce a heuristic search planner, based on Weighted AO* (WAO*). The planner includes search enhancements such as sound pruning, based on state dominance, and an admissible heuristic. Focusing on plans that are robust to uncertainty, we demonstrate our ideas on data compiled from real historical data from Dublin, Ireland. Repeated calls to WAO*, with decreasing weights, have a good any-time performance. Our search enhancements play an important role in the planner's performance.