Goto

Collaborating Authors

 Nguyen, Khanh


DocMIA: Document-Level Membership Inference Attacks against DocVQA Models

arXiv.org Artificial Intelligence

Document Visual Question Answering (DocVQA) has introduced a new paradigm for end-to-end document understanding, and quickly became one of the standard benchmarks for multimodal LLMs. Automating document processing workflows, driven by DocVQA models, presents significant potential for many business sectors. However, documents tend to contain highly sensitive information, raising concerns about privacy risks associated with training such DocVQA models. One significant privacy vulnerability, exploited by the membership inference attack, is the possibility for an adversary to determine if a particular record was part of the model's training data. In this paper, we introduce two novel membership inference attacks tailored specifically to DocVQA models. These attacks are designed for two different adversarial scenarios: a white-box setting, where the attacker has full access to the model architecture and parameters, and a black-box setting, where only the model's outputs are available. Notably, our attacks assume the adversary lacks access to auxiliary datasets, which is more realistic in practice but also more challenging. Our unsupervised methods outperform existing state-of-the-art membership inference attacks across a variety of DocVQA models and datasets, demonstrating their effectiveness and highlighting the privacy risks in this domain. Up until a few years ago, document processing services relied on template-based information extraction models, which were created ad-hoc for each client. Although these approaches allowed for good control of client data and could be extended to new documents with a few examples, they were limited in scalability and difficult to maintain. Consequently, the introduction of Document Visual Question Answering (DocVQA) (Mathew et al., 2020) in 2019 has resulted in a paradigm shift in document processing services, enabling end-to-end generic solutions to be applied in this domain. DocVQA leverages multi-modal large language models to streamline business workflows and provide clients with novel ways to interact with the document processing pipeline. However, as cloud-based DocVQA solutions become more prevalent, significant privacy risks emerge, particularly concerning the potential leakage of sensitive information through model vulnerabilities. Indeed, during the training of a DocVQA model, each document can have several associated question-answer pairs, with each pair considered a unique data point. As a result, a single document can appear multiple times, which significantly raises the risks associated with privacy vulnerabilities.


NeurIPS 2023 Competition: Privacy Preserving Federated Learning Document VQA

arXiv.org Artificial Intelligence

The Privacy Preserving Federated Learning Document VQA (PFL-DocVQA) competition challenged the community to develop provably private and communication-efficient solutions in a federated setting for a real-life use case: invoice processing. The competition introduced a dataset of real invoice documents, along with associated questions and answers requiring information extraction and reasoning over the document images. Thereby, it brings together researchers and expertise from the document analysis, privacy, and federated learning communities. Participants fine-tuned a pre-trained, state-of-the-art Document Visual Question Answering model provided by the organizers for this new domain, mimicking a typical federated invoice processing setup. The base model is a multi-modal generative language model, and sensitive information could be exposed through either the visual or textual input modality. Participants proposed elegant solutions to reduce communication costs while maintaining a minimum utility threshold in track 1 and to protect all information from each document provider using differential privacy in track 2. The competition served as a new testbed for developing and testing private federated learning methods, simultaneously raising awareness about privacy within the document image analysis and recognition community. Ultimately, the competition analysis provides best practices and recommendations for successfully running privacy-focused federated learning challenges in the future.


Federated Document Visual Question Answering: A Pilot Study

arXiv.org Artificial Intelligence

An important handicap of document analysis research is that documents tend to be copyrighted or contain private information, which prohibits their open publication and the creation of centralised, large-scale document datasets. Instead, documents are scattered in private data silos, making extensive training over heterogeneous data a tedious task. In this work, we explore the use of a federated learning (FL) scheme as a way to train a shared model on decentralised private document data. We focus on the problem of Document VQA, a task particularly suited to this approach, as the type of reasoning capabilities required from the model can be quite different in diverse domains. Enabling training over heterogeneous document datasets can thus substantially enrich DocVQA models. We assemble existing DocVQA datasets from diverse domains to reflect the data heterogeneity in real-world applications. We explore the self-pretraining technique in this multi-modal setting, where the same data is used for both pretraining and finetuning, making it relevant for privacy preservation. We further propose combining self-pretraining with a Federated DocVQA training method using centralized adaptive optimization that outperforms the FedAvg baseline. With extensive experiments, we also present a multi-faceted analysis on training DocVQA models with FL, which provides insights for future research on this task. We show that our pretraining strategies can effectively learn and scale up under federated training with diverse DocVQA datasets and tuning hyperparameters is essential for practical document tasks under federation.


Softmax Probabilities (Mostly) Predict Large Language Model Correctness on Multiple-Choice Q&A

arXiv.org Artificial Intelligence

Although large language models (LLMs) perform impressively on many tasks, overconfidence remains a problem. We hypothesized that on multiple-choice Q&A tasks, wrong answers would be associated with smaller maximum softmax probabilities (MSPs) compared to correct answers. We comprehensively evaluate this hypothesis on ten open-source LLMs and five datasets, and find strong evidence for our hypothesis among models which perform well on the original Q&A task. For the six LLMs with the best Q&A performance, the AUROC derived from the MSP was better than random chance with p < 10^{-4} in 59/60 instances. Among those six LLMs, the average AUROC ranged from 60% to 69%. Leveraging these findings, we propose a multiple-choice Q&A task with an option to abstain and show that performance can be improved by selectively abstaining based on the MSP of the initial model response. We also run the same experiments with pre-softmax logits instead of softmax probabilities and find similar (but not identical) results.


Language-Guided World Models: A Model-Based Approach to AI Control

arXiv.org Artificial Intelligence

Installing probabilistic world models into artificial agents opens an efficient channel for humans to communicate with and control these agents. In addition to updating agent policies, humans can modify their internal world models in order to influence their decisions. The challenge, however, is that currently existing world models are difficult for humans to adapt because they lack a natural communication interface. Aimed at addressing this shortcoming, we develop Language-Guided World Models (LWMs), which can capture environment dynamics by reading language descriptions. These models enhance agent communication efficiency, allowing humans to simultaneously alter their behavior on multiple tasks with concise language feedback. They also enable agents to self-learn from texts originally written to instruct humans. To facilitate the development of LWMs, we design a challenging benchmark based on the game of MESSENGER (Hanjie et al., 2021), requiring compositional generalization to new language descriptions and environment dynamics. Our experiments reveal that the current state-of-the-art Transformer architecture performs poorly on this benchmark, motivating us to design a more robust architecture. To showcase the practicality of our proposed LWMs, we simulate a scenario where these models augment the interpretability and safety of an agent by enabling it to generate and discuss plans with a human before execution. By effectively incorporating language feedback on the plan, the models boost the agent performance in the real environment by up to three times without collecting any interactive experiences in this environment.


Language Models are Bounded Pragmatic Speakers: Understanding RLHF from a Bayesian Cognitive Modeling Perspective

arXiv.org Artificial Intelligence

How do language models "think"? This paper formulates a probabilistic cognitive model called the bounded pragmatic speaker, which can characterize the operation of different variations of language models. Specifically, we demonstrate that large language models fine-tuned with reinforcement learning from human feedback (Ouyang et al., 2022) embody a model of thought that conceptually resembles a fast-and-slow model (Kahneman, 2011), which psychologists have attributed to humans. We discuss the limitations of reinforcement learning from human feedback as a fast-and-slow model of thought and propose avenues for expanding this framework. In essence, our research highlights the value of adopting a cognitive probabilistic modeling approach to gain insights into the comprehension, evaluation, and advancement of language models.


Privacy-Aware Document Visual Question Answering

arXiv.org Artificial Intelligence

Document Visual Question Answering (DocVQA) is a fast growing branch of document understanding. Despite the fact that documents contain sensitive or copyrighted information, none of the current DocVQA methods offers strong privacy guarantees. In this work, we explore privacy in the domain of DocVQA for the first time. We highlight privacy issues in state of the art multi-modal LLM models used for DocVQA, and explore possible solutions. Specifically, we focus on the invoice processing use case as a realistic, widely used scenario for document understanding, and propose a large scale DocVQA dataset comprising invoice documents and associated questions and answers. We employ a federated learning scheme, that reflects the real-life distribution of documents in different businesses, and we explore the use case where the ID of the invoice issuer is the sensitive information to be protected. We demonstrate that non-private models tend to memorise, behaviour that can lead to exposing private information. We then evaluate baseline training schemes employing federated learning and differential privacy in this multi-modal scenario, where the sensitive information might be exposed through any of the two input modalities: vision (document image) or language (OCR tokens). Finally, we design an attack exploiting the memorisation effect of the model, and demonstrate its effectiveness in probing different DocVQA models.


Hallucination Detection for Grounded Instruction Generation

arXiv.org Artificial Intelligence

We investigate the problem of generating instructions to guide humans to navigate in simulated residential environments. A major issue with current models is hallucination: they generate references to actions or objects that are inconsistent with what a human follower would perform or encounter along the described path. We develop a model that detects these hallucinated references by adopting a model pre-trained on a large corpus of image-text pairs, and fine-tuning it with a contrastive loss that separates correct instructions from instructions containing synthesized hallucinations. Our final model outperforms several baselines, including using word probability estimated by the instruction-generation model, and supervised models based on LSTM and Transformer.


Progressively Efficient Learning

arXiv.org Artificial Intelligence

Assistant AI agents should be capable of rapidly acquiring novel skills and adapting to new user preferences. Traditional frameworks like imitation learning and reinforcement learning do not facilitate this capability because they support only low-level, inefficient forms of communication. In contrast, humans communicate with progressive efficiency by defining and sharing abstract intentions. Reproducing similar capability in AI agents, we develop a novel learning framework named Communication-Efficient Interactive Learning (CEIL). By equipping a learning agent with an abstract, dynamic language and an intrinsic motivation to learn with minimal communication effort, CEIL leads to emergence of a human-like pattern where the learner and the teacher communicate progressively efficiently by exchanging increasingly more abstract intentions. CEIL demonstrates impressive performance and communication efficiency on a 2D MineCraft domain featuring long-horizon decision-making tasks. Agents trained with CEIL quickly master new tasks, outperforming non-hierarchical and hierarchical imitation learning by up to 50% and 20% in absolute success rate, respectively, given the same number of interactions with the teacher. Especially, the framework performs robustly with teachers modeled after human pragmatic communication behavior.


Define, Evaluate, and Improve Task-Oriented Cognitive Capabilities for Instruction Generation Models

arXiv.org Artificial Intelligence

Recent work studies the cognitive capabilities of language models through psychological tests designed for humans. While these studies are helpful for understanding the general capabilities of these models, there is no guarantee that a model possessing sufficient capabilities to pass those tests would actually use those capabilities in performing real-life tasks. In this work, we formulate task-oriented cognitive capabilities, which are human-like cognitive capabilities that language models leverage to perform tasks. These capabilities are (i) the ability to quickly generate good candidate utterances (the search capability) (ii) the ability to predict how a listener interprets those utterances and choose the most appropriate one (the pragmatic capability). We design an evaluation scheme for comparing these capabilities of a language model with those of a human. Applying this scheme to examine various models in a navigation instruction generation problem, we find that their pragmatic capability is severely lacking. This insight leads us to augment them with better models of the listener and obtain a significant boost of 11% in success rate in guiding real humans. Our work advocates for having a principled procedure for aligning language models with humans that involves (i) formulating task-oriented capabilities, (ii) devising a method to quantify their deficiency, and (iii) iteratively improving them.