Moradi, Mohammadamin
Kolmogorov-Arnold Network Autoencoders
Moradi, Mohammadamin, Panahi, Shirin, Bollt, Erik, Lai, Ying-Cheng
Deep learning models have revolutionized various domains, with Multi-Layer Perceptrons (MLPs) being a cornerstone for tasks like data regression and image classification. However, a recent study has introduced Kolmogorov-Arnold Networks (KANs) as promising alternatives to MLPs, leveraging activation functions placed on edges rather than nodes. This structural shift aligns KANs closely with the Kolmogorov-Arnold representation theorem, potentially enhancing both model accuracy and interpretability. In this study, we explore the efficacy of KANs in the context of data representation via autoencoders, comparing their performance with traditional Convolutional Neural Networks (CNNs) on the MNIST, SVHN, and CIFAR-10 datasets. Our results demonstrate that KAN-based autoencoders achieve competitive performance in terms of reconstruction accuracy, thereby suggesting their viability as effective tools in data analysis tasks.
Data-driven model discovery with Kolmogorov-Arnold networks
Moradi, Mohammadamin, Panahi, Shirin, Bollt, Erik M., Lai, Ying-Cheng
Department of Physics, Arizona State University, Tempe, Arizona 85287, USA (Dated: September 24, 2024) Data-driven model discovery of complex dynamical systems is typically done using sparse optimization, but it has a fundamental limitation: sparsity in that the underlying governing equations of the system contain only a small number of elementary mathematical terms. Examples where sparse optimization fails abound, such as the classic Ikeda or optical-cavity map in nonlinear dynamics and a large variety of ecosystems. Exploiting the recently articulated Kolmogorov-Arnold networks, we develop a general model-discovery framework for any dynamical systems including those that do not satisfy the sparsity condition. In particular, we demonstrate non-uniqueness in that a large number of approximate models of the system can be found which generate the same invariant set with the correct statistics such as the Lyapunov exponents and Kullback-Leibler divergence. An analogy to shadowing of numerical trajectories in chaotic systems is pointed out.
Random forests for detecting weak signals and extracting physical information: a case study of magnetic navigation
Moradi, Mohammadamin, Zhai, Zheng-Meng, Nielsen, Aaron, Lai, Ying-Cheng
It was recently demonstrated that two machine-learning architectures, reservoir computing and time-delayed feed-forward neural networks, can be exploited for detecting the Earth's anomaly magnetic field immersed in overwhelming complex signals for magnetic navigation in a GPS-denied environment. The accuracy of the detected anomaly field corresponds to a positioning accuracy in the range of 10 to 40 meters. To increase the accuracy and reduce the uncertainty of weak signal detection as well as to directly obtain the position information, we exploit the machine-learning model of random forests that combines the output of multiple decision trees to give optimal values of the physical quantities of interest. In particular, from time-series data gathered from the cockpit of a flying airplane during various maneuvering stages, where strong background complex signals are caused by other elements of the Earth's magnetic field and the fields produced by the electronic systems in the cockpit, we demonstrate that the random-forest algorithm performs remarkably well in detecting the weak anomaly field and in filtering the position of the aircraft. With the aid of the conventional inertial navigation system, the positioning error can be reduced to less than 10 meters. We also find that, contrary to the conventional wisdom, the classic Tolles-Lawson model for calibrating and removing the magnetic field generated by the body of the aircraft is not necessary and may even be detrimental for the success of the random-forest method.
Machine-learning parameter tracking with partial state observation
Zhai, Zheng-Meng, Moradi, Mohammadamin, Glaz, Bryan, Haile, Mulugeta, Lai, Ying-Cheng
Complex and nonlinear dynamical systems often involve parameters that change with time, accurate tracking of which is essential to tasks such as state estimation, prediction, and control. Existing machine-learning methods require full state observation of the underlying system and tacitly assume adiabatic changes in the parameter. Formulating an inverse problem and exploiting reservoir computing, we develop a model-free and fully data-driven framework to accurately track time-varying parameters from partial state observation in real time. In particular, with training data from a subset of the dynamical variables of the system for a small number of known parameter values, the framework is able to accurately predict the parameter variations in time. Low- and high-dimensional, Markovian and non-Markovian nonlinear dynamical systems are used to demonstrate the power of the machine-learning based parameter-tracking framework. Pertinent issues affecting the tracking performance are addressed.
Model-free tracking control of complex dynamical trajectories with machine learning
Zhai, Zheng-Meng, Moradi, Mohammadamin, Kong, Ling-Wei, Glaz, Bryan, Haile, Mulugeta, Lai, Ying-Cheng
Nonlinear tracking control enabling a dynamical system to track a desired trajectory is fundamental to robotics, serving a wide range of civil and defense applications. In control engineering, designing tracking control requires complete knowledge of the system model and equations. We develop a model-free, machine-learning framework to control a two-arm robotic manipulator using only partially observed states, where the controller is realized by reservoir computing. Stochastic input is exploited for training, which consists of the observed partial state vector as the first and its immediate future as the second component so that the neural machine regards the latter as the future state of the former. In the testing (deployment) phase, the immediate-future component is replaced by the desired observational vector from the reference trajectory. We demonstrate the effectiveness of the control framework using a variety of periodic and chaotic signals, and establish its robustness against measurement noise, disturbances, and uncertainties.