Moon, Suhong
Plan-and-Act: Improving Planning of Agents for Long-Horizon Tasks
Erdogan, Lutfi Eren, Lee, Nicholas, Kim, Sehoon, Moon, Suhong, Furuta, Hiroki, Anumanchipalli, Gopala, Keutzer, Kurt, Gholami, Amir
Large language models (LLMs) have shown remarkable advancements in enabling language agents to tackle simple tasks. However, applying them for complex, multi-step, long-horizon tasks remains a challenge. Recent work have found success by separating high-level planning from low-level execution, which enables the model to effectively balance high-level planning objectives and low-level execution details. However, generating accurate plans remains difficult since LLMs are not inherently trained for this task. To address this, we propose Plan-and-Act, a novel framework that incorporates explicit planning into LLM-based agents and introduces a scalable method to enhance plan generation through a novel synthetic data generation method. Plan-and-Act consists of a Planner model which generates structured, high-level plans to achieve user goals, and an Executor model that translates these plans into environment-specific actions. To train the Planner effectively, we introduce a synthetic data generation method that annotates ground-truth trajectories with feasible plans, augmented with diverse and extensive examples to enhance generalization. We evaluate Plan-and-Act using web navigation as a representative long-horizon planning environment, demonstrating a state-of the-art 54% success rate on the WebArena-Lite benchmark.
Language Model Fine-Tuning on Scaled Survey Data for Predicting Distributions of Public Opinions
Suh, Joseph, Jahanparast, Erfan, Moon, Suhong, Kang, Minwoo, Chang, Serina
Large language models (LLMs) present novel opportunities in public opinion research by predicting survey responses in advance during the early stages of survey design. Prior methods steer LLMs via descriptions of subpopulations as LLMs' input prompt, yet such prompt engineering approaches have struggled to faithfully predict the distribution of survey responses from human subjects. In this work, we propose directly fine-tuning LLMs to predict response distributions by leveraging unique structural characteristics of survey data. To enable fine-tuning, we curate SubPOP, a significantly scaled dataset of 3,362 questions and 70K subpopulation-response pairs from well-established public opinion surveys. We show that fine-tuning on SubPOP greatly improves the match between LLM predictions and human responses across various subpopulations, reducing the LLM-human gap by up to 46% compared to baselines, and achieves strong generalization to unseen surveys and subpopulations. Our findings highlight the potential of survey-based fine-tuning to improve opinion prediction for diverse, real-world subpopulations and therefore enable more efficient survey designs. Our code is available at https://github.com/JosephJeesungSuh/subpop.
ETS: Efficient Tree Search for Inference-Time Scaling
Hooper, Coleman, Kim, Sehoon, Moon, Suhong, Dilmen, Kerem, Maheswaran, Monishwaran, Lee, Nicholas, Mahoney, Michael W., Shao, Sophia, Keutzer, Kurt, Gholami, Amir
Test-time compute scaling has emerged as a new axis along which to improve model accuracy, where additional computation is used at inference time to allow the model to think longer for more challenging problems. One promising approach for test-time compute scaling is search against a process reward model, where a model generates multiple potential candidates at each step of the search, and these partial trajectories are then scored by a separate reward model in order to guide the search process. The diversity of trajectories in the tree search process affects the accuracy of the search, since increasing diversity promotes more exploration. However, this diversity comes at a cost, as divergent trajectories have less KV sharing, which means they consume more memory and slow down the search process. Previous search methods either do not perform sufficient exploration, or else explore diverse trajectories but have high latency. We address this challenge by proposing Efficient Tree Search (ETS), which promotes KV sharing by pruning redundant trajectories while maintaining necessary diverse trajectories. ETS incorporates a linear programming cost model to promote KV cache sharing by penalizing the number of nodes retained, while incorporating a semantic coverage term into the cost model to ensure that we retain trajectories which are semantically different. We demonstrate how ETS can achieve 1.8$\times$ reduction in average KV cache size during the search process, leading to 1.4$\times$ increased throughput relative to prior state-of-the-art methods, with minimal accuracy degradation and without requiring any custom kernel implementation. Code is available at: https://github.com/SqueezeAILab/ETS.
Virtual Personas for Language Models via an Anthology of Backstories
Moon, Suhong, Abdulhai, Marwa, Kang, Minwoo, Suh, Joseph, Soedarmadji, Widyadewi, Behar, Eran Kohen, Chan, David M.
Large language models (LLMs) are trained from vast repositories of text authored by millions of distinct authors, reflecting an enormous diversity of human traits. While these models bear the potential to be used as approximations of human subjects in behavioral studies, prior efforts have been limited in steering model responses to match individual human users. In this work, we introduce "Anthology", a method for conditioning LLMs to particular virtual personas by harnessing open-ended life narratives, which we refer to as "backstories." We show that our methodology enhances the consistency and reliability of experimental outcomes while ensuring better representation of diverse sub-populations. Across three nationally representative human surveys conducted as part of Pew Research Center's American Trends Panel (ATP), we demonstrate that Anthology achieves up to 18% improvement in matching the response distributions of human respondents and 27% improvement in consistency metrics. Our code and generated backstories are available at https://github.com/CannyLab/anthology.
An LLM Compiler for Parallel Function Calling
Kim, Sehoon, Moon, Suhong, Tabrizi, Ryan, Lee, Nicholas, Mahoney, Michael W., Keutzer, Kurt, Gholami, Amir
Recent language models have shown remarkable results on various complex reasoning benchmarks. The reasoning capabilities of LLMs enable them to execute external function calls to overcome their inherent limitations, such as knowledge cutoffs, poor arithmetic skills, or lack of access to private data. This development has allowed LLMs to select and coordinate multiple functions based on the context to tackle more complex problems. However, current methods for multiple function calling often require sequential reasoning and acting for each function which can result in high latency, cost, and sometimes inaccurate behavior. To address this, we introduce LLMCompiler, which executes functions in parallel to efficiently orchestrate multiple function calling. Drawing from the principles of classical compilers, LLMCompiler streamlines parallel function calling with three components: (i) an LLM Planner, formulating execution plans; (ii) a Task Fetching Unit, dispatching function calling tasks; and (iii) an Executor, executing these tasks in parallel. LLMCompiler automatically generates an optimized orchestration for the function calls and can be used with both open-source and closed-source models. We have benchmarked LLMCompiler on a range of tasks with different patterns of function calling. We observe consistent latency speedup of up to 3.7x, cost savings of up to 6.7x, and accuracy improvement of up to ~9% compared to ReAct.
Speculative Decoding with Big Little Decoder
Kim, Sehoon, Mangalam, Karttikeya, Moon, Suhong, Malik, Jitendra, Mahoney, Michael W., Gholami, Amir, Keutzer, Kurt
The recent emergence of Large Language Models based on the Transformer architecture has enabled dramatic advancements in the field of Natural Language Processing. However, these models have long inference latency, which limits their deployment and makes them prohibitively expensive for various real-time applications. The inference latency is further exacerbated by autoregressive generative tasks, as models need to run iteratively to generate tokens sequentially without leveraging token-level parallelization. To address this, we propose Big Little Decoder (BiLD), a framework that can improve inference efficiency and latency for a wide range of text generation applications. The BiLD framework contains two models with different sizes that collaboratively generate text. The small model runs autoregressively to generate text with a low inference cost, and the large model is only invoked occasionally to refine the small model's inaccurate predictions in a non-autoregressive manner. To coordinate the small and large models, BiLD introduces two simple yet effective policies: (1) the fallback policy that determines when to hand control over to the large model; and (2) the rollback policy that determines when the large model needs to correct the small model's inaccurate predictions. To evaluate our framework across different tasks and models, we apply BiLD to various text generation scenarios encompassing machine translation on IWSLT 2017 De-En and WMT 2014 De-En, and summarization on XSUM and CNN/DailyMail. On an NVIDIA T4 GPU, our framework achieves a speedup of up to 2.12x speedup with minimal generation quality degradation. Furthermore, our framework is fully plug-and-play and can be applied without any modifications in the training process or model architecture. Our code is open-sourced