Montúfar, Guido
On the Local Complexity of Linear Regions in Deep ReLU Networks
Patel, Niket, Montúfar, Guido
We define the local complexity of a neural network with continuous piecewise linear activations as a measure of the density of linear regions over an input data distribution. We show theoretically that ReLU networks that learn low-dimensional feature representations have a lower local complexity. This allows us to connect recent empirical observations on feature learning at the level of the weight matrices with concrete properties of the learned functions. In particular, we show that the local complexity serves as an upper bound on the total variation of the function over the input data distribution and thus that feature learning can be related to adversarial robustness. Lastly, we consider how optimization drives ReLU networks towards solutions with lower local complexity. Overall, this work contributes a theoretical framework towards relating geometric properties of ReLU networks to different aspects of learning such as feature learning and representation cost. Despite the numerous achievements of deep learning, many of the mechanisms by which deep neural networks learn and generalize remain unclear. An "Occam's Razor" style heuristic is that we want our neural network to parameterize a simple solution after training, but it can be challenging to establish a useful metric of the complexity of a deep neural network (Hu et al., 2021). A growing body of research has sought to gain insights into the complexity of deep neural networks in the case where we use piece-wise linear activation functions, such as ReLU, LeakyReLU, or Maxout. In this work we aim to advance a theoretical framework towards better understanding the local distribution of linear regions near the data distribution and how it relates to other relevant aspects of learning such as robustness and representation learning. In the kernel regime, neural networks with piecewise linear activations are observed to follow lazy training (Chizat et al., 2019) and bias towards smooth interpolants which do not significantly change the structure of linear regions during training (see, e.g., Williams et al., 2019; Jin & Montúfar, 2023).
Implicit Bias of Mirror Descent for Shallow Neural Networks in Univariate Regression
Liang, Shuang, Montúfar, Guido
We examine the implicit bias of mirror flow in univariate least squares error regression with wide and shallow neural networks. For a broad class of potential functions, we show that mirror flow exhibits lazy training and has the same implicit bias as ordinary gradient flow when the network width tends to infinity. For ReLU networks, we characterize this bias through a variational problem in function space. Our analysis includes prior results for ordinary gradient flow as a special case and lifts limitations which required either an intractable adjustment of the training data or networks with skip connections. We further introduce scaled potentials and show that for these, mirror flow still exhibits lazy training but is not in the kernel regime. For networks with absolute value activations, we show that mirror flow with scaled potentials induces a rich class of biases, which generally cannot be captured by an RKHS norm. A takeaway is that whereas the parameter initialization determines how strongly the curvature of the learned function is penalized at different locations of the input space, the scaled potential determines how the different magnitudes of the curvature are penalized.
Bounds for the smallest eigenvalue of the NTK for arbitrary spherical data of arbitrary dimension
Karhadkar, Kedar, Murray, Michael, Montúfar, Guido
Bounds on the smallest eigenvalue of the neural tangent kernel (NTK) are a key ingredient in the analysis of neural network optimization and memorization. However, existing results require distributional assumptions on the data and are limited to a high-dimensional setting, where the input dimension $d_0$ scales at least logarithmically in the number of samples $n$. In this work we remove both of these requirements and instead provide bounds in terms of a measure of the collinearity of the data: notably these bounds hold with high probability even when $d_0$ is held constant versus $n$. We prove our results through a novel application of the hemisphere transform.
Fisher-Rao Gradient Flows of Linear Programs and State-Action Natural Policy Gradients
Müller, Johannes, Çaycı, Semih, Montúfar, Guido
Kakade's natural policy gradient method has been studied extensively in the last years showing linear convergence with and without regularization. We study another natural gradient method which is based on the Fisher information matrix of the state-action distributions and has received little attention from the theoretical side. Here, the state-action distributions follow the Fisher-Rao gradient flow inside the state-action polytope with respect to a linear potential. Therefore, we study Fisher-Rao gradient flows of linear programs more generally and show linear convergence with a rate that depends on the geometry of the linear program. Equivalently, this yields an estimate on the error induced by entropic regularization of the linear program which improves existing results. We extend these results and show sublinear convergence for perturbed Fisher-Rao gradient flows and natural gradient flows up to an approximation error. In particular, these general results cover the case of state-action natural policy gradients.
The Real Tropical Geometry of Neural Networks
Brandenburg, Marie-Charlotte, Loho, Georg, Montúfar, Guido
We consider a binary classifier defined as the sign of a tropical rational function, that is, as the difference of two convex piecewise linear functions. The parameter space of ReLU neural networks is contained as a semialgebraic set inside the parameter space of tropical rational functions. We initiate the study of two different subdivisions of this parameter space: a subdivision into semialgebraic sets, on which the combinatorial type of the decision boundary is fixed, and a subdivision into a polyhedral fan, capturing the combinatorics of the partitions of the dataset. The sublevel sets of the 0/1-loss function arise as subfans of this classification fan, and we show that the level-sets are not necessarily connected. We describe the classification fan i) geometrically, as normal fan of the activation polytope, and ii) combinatorially through a list of properties of associated bipartite graphs, in analogy to covector axioms of oriented matroids and tropical oriented matroids. Our findings extend and refine the connection between neural networks and tropical geometry by observing structures established in real tropical geometry, such as positive tropicalizations of hypersurfaces and tropical semialgebraic sets.
Benign overfitting in leaky ReLU networks with moderate input dimension
Karhadkar, Kedar, George, Erin, Murray, Michael, Montúfar, Guido, Needell, Deanna
The problem of benign overfitting asks whether it is possible for a model to perfectly fit noisy training data and still generalize well. We study benign overfitting in two-layer leaky ReLU networks trained with the hinge loss on a binary classification task. We consider input data which can be decomposed into the sum of a common signal and a random noise component, which lie on subspaces orthogonal to one another. We characterize conditions on the signal to noise ratio (SNR) of the model parameters giving rise to benign versus non-benign, or harmful, overfitting: in particular, if the SNR is high then benign overfitting occurs, conversely if the SNR is low then harmful overfitting occurs. We attribute both benign and non-benign overfitting to an approximate margin maximization property and show that leaky ReLU networks trained on hinge loss with Gradient Descent (GD) satisfy this property. In contrast to prior work we do not require near orthogonality conditions on the training data: notably, for input dimension $d$ and training sample size $n$, while prior work shows asymptotically optimal error when $d = \Omega(n^2 \log n)$, here we require only $d = \Omega\left(n \log \frac{1}{\epsilon}\right)$ to obtain error within $\epsilon$ of optimal.
Enumeration of max-pooling responses with generalized permutohedra
Escobar, Laura, Gallardo, Patricio, González-Anaya, Javier, González, José L., Montúfar, Guido, Morales, Alejandro H.
We investigate the combinatorics of max-pooling layers, which are functions that downsample input arrays by taking the maximum over shifted windows of input coordinates, and which are commonly used in convolutional neural networks. We obtain results on the number of linearity regions of these functions by equivalently counting the number of vertices of certain Minkowski sums of simplices. We characterize the faces of such polytopes and obtain generating functions and closed formulas for the number of vertices and facets in a 1D max-pooling layer depending on the size of the pooling windows and stride, and for the number of vertices in a special case of 2D max-pooling.
Critical Points and Convergence Analysis of Generative Deep Linear Networks Trained with Bures-Wasserstein Loss
Bréchet, Pierre, Papagiannouli, Katerina, An, Jing, Montúfar, Guido
We consider a deep matrix factorization model of covariance matrices trained with the Bures-Wasserstein distance. While recent works have made advances in the study of the optimization problem for overparametrized low-rank matrix approximation, much emphasis has been placed on discriminative settings and the square loss. In contrast, our model considers another type of loss and connects with the generative setting. We characterize the critical points and minimizers of the Bures-Wasserstein distance over the space of rank-bounded matrices. The Hessian of this loss at low-rank matrices can theoretically blow up, which creates challenges to analyze convergence of gradient optimization methods. We establish convergence results for gradient flow using a smooth perturbative version of the loss as well as convergence results for finite step size gradient descent under certain assumptions on the initial weights.
Mildly Overparameterized ReLU Networks Have a Favorable Loss Landscape
Karhadkar, Kedar, Murray, Michael, Tseran, Hanna, Montúfar, Guido
We study the loss landscape of two-layer mildly overparameterized ReLU neural networks on a generic finite input dataset for the squared error loss. Our approach involves bounding the dimension of the sets of local and global minima using the rank of the Jacobian of the parameterization map. Using results on random binary matrices, we show most activation patterns correspond to parameter regions with no bad differentiable local minima. Furthermore, for one-dimensional input data, we show most activation regions realizable by the network contain a high dimensional set of global minima and no bad local minima. We experimentally confirm these results by finding a phase transition from most regions having full rank to many regions having deficient rank depending on the amount of overparameterization.
Expected Gradients of Maxout Networks and Consequences to Parameter Initialization
Tseran, Hanna, Montúfar, Guido
We study the gradients of a maxout network with respect to inputs and parameters and obtain bounds for the moments depending on the architecture and the parameter distribution. We observe that the distribution of the input-output Jacobian depends on the input, which complicates a stable parameter initialization. Based on the moments of the gradients, we formulate parameter initialization strategies that avoid vanishing and exploding gradients in wide networks. Experiments with deep fully-connected and convolutional networks show that this strategy improves SGD and Adam training of deep maxout networks. In addition, we obtain refined bounds on the expected number of linear regions, results on the expected curve length distortion, and results on the NTK.