Mohammed, Nabeel
VideoLights: Feature Refinement and Cross-Task Alignment Transformer for Joint Video Highlight Detection and Moment Retrieval
Paul, Dhiman, Parvez, Md Rizwan, Mohammed, Nabeel, Rahman, Shafin
Video Highlight Detection and Moment Retrieval (HD/MR) are essential in video analysis. Recent joint prediction transformer models often overlook their cross-task dynamics and video-text alignment and refinement. Moreover, most models typically use limited, uni-directional attention mechanisms, resulting in weakly integrated representations and suboptimal performance in capturing the interdependence between video and text modalities. Although large-language and vision-language models (LLM/LVLMs) have gained prominence across various domains, their application in this field remains relatively underexplored. Here we propose VideoLights, a novel HD/MR framework addressing these limitations through (i) Convolutional Projection and Feature Refinement modules with an alignment loss for better video-text feature alignment, (ii) Bi-Directional Cross-Modal Fusion network for strongly coupled query-aware clip representations, and (iii) Uni-directional joint-task feedback mechanism enhancing both tasks through correlation. In addition, (iv) we introduce hard positive/negative losses for adaptive error penalization and improved learning, and (v) leverage LVLMs like BLIP-2 for enhanced multimodal feature integration and intelligent pretraining using synthetic data generated from LVLMs. Comprehensive experiments on QVHighlights, TVSum, and Charades-STA benchmarks demonstrate state-of-the-art performance. Codes and models are available at https://github.com/dpaul06/VideoLights .
BanglaDialecto: An End-to-End AI-Powered Regional Speech Standardization
Samin, Md. Nazmus Sadat, Ahad, Jawad Ibn, Medha, Tanjila Ahmed, Rahman, Fuad, Amin, Mohammad Ruhul, Mohammed, Nabeel, Rahman, Shafin
This study focuses on recognizing Bangladeshi dialects and converting diverse Bengali accents into standardized formal Bengali speech. Dialects, often referred to as regional languages, are distinctive variations of a language spoken in a particular location and are identified by their phonetics, pronunciations, and lexicon. Subtle changes in pronunciation and intonation are also influenced by geographic location, educational attainment, and socioeconomic status. Dialect standardization is needed to ensure effective communication, educational consistency, access to technology, economic opportunities, and the preservation of linguistic resources while respecting cultural diversity. Being the fifth most spoken language with around 55 distinct dialects spoken by 160 million people, addressing Bangla dialects is crucial for developing inclusive communication tools. However, limited research exists due to a lack of comprehensive datasets and the challenges of handling diverse dialects. With the advancement in multilingual Large Language Models (mLLMs), emerging possibilities have been created to address the challenges of dialectal Automated Speech Recognition (ASR) and Machine Translation (MT). This study presents an end-to-end pipeline for converting dialectal Noakhali speech to standard Bangla speech. This investigation includes constructing a large-scale diverse dataset with dialectal speech signals that tailored the fine-tuning process in ASR and LLM for transcribing the dialect speech to dialect text and translating the dialect text to standard Bangla text. Our experiments demonstrated that fine-tuning the Whisper ASR model achieved a CER of 0.8% and WER of 1.5%, while the BanglaT5 model attained a BLEU score of 41.6% for dialect-to-standard text translation.
Empowering Meta-Analysis: Leveraging Large Language Models for Scientific Synthesis
Ahad, Jawad Ibn, Sultan, Rafeed Mohammad, Kaikobad, Abraham, Rahman, Fuad, Amin, Mohammad Ruhul, Mohammed, Nabeel, Rahman, Shafin
This study investigates the automation of meta-analysis in scientific documents using large language models (LLMs). Meta-analysis is a robust statistical method that synthesizes the findings of multiple studies support articles to provide a comprehensive understanding. We know that a meta-article provides a structured analysis of several articles. However, conducting meta-analysis by hand is labor-intensive, time-consuming, and susceptible to human error, highlighting the need for automated pipelines to streamline the process. Our research introduces a novel approach that fine-tunes the LLM on extensive scientific datasets to address challenges in big data handling and structured data extraction. We automate and optimize the meta-analysis process by integrating Retrieval Augmented Generation (RAG). Tailored through prompt engineering and a new loss metric, Inverse Cosine Distance (ICD), designed for fine-tuning on large contextual datasets, LLMs efficiently generate structured meta-analysis content. Human evaluation then assesses relevance and provides information on model performance in key metrics. This research demonstrates that fine-tuned models outperform non-fine-tuned models, with fine-tuned LLMs generating 87.6% relevant meta-analysis abstracts. The relevance of the context, based on human evaluation, shows a reduction in irrelevancy from 4.56% to 1.9%. These experiments were conducted in a low-resource environment, highlighting the study's contribution to enhancing the efficiency and reliability of meta-analysis automation.
BanLemma: A Word Formation Dependent Rule and Dictionary Based Bangla Lemmatizer
Afrin, Sadia, Chowdhury, Md. Shahad Mahmud, Islam, Md. Ekramul, Khan, Faisal Ahamed, Chowdhury, Labib Imam, Mahtab, MD. Motahar, Chowdhury, Nazifa Nuha, Forkan, Massud, Kundu, Neelima, Arif, Hakim, Rashid, Mohammad Mamun Or, Amin, Mohammad Ruhul, Mohammed, Nabeel
Lemmatization holds significance in both natural language processing (NLP) and linguistics, as it effectively decreases data density and aids in comprehending contextual meaning. However, due to the highly inflected nature and morphological richness, lemmatization in Bangla text poses a complex challenge. In this study, we propose linguistic rules for lemmatization and utilize a dictionary along with the rules to design a lemmatizer specifically for Bangla. Our system aims to lemmatize words based on their parts of speech class within a given sentence. Unlike previous rule-based approaches, we analyzed the suffix marker occurrence according to the morpho-syntactic values and then utilized sequences of suffix markers instead of entire suffixes. To develop our rules, we analyze a large corpus of Bangla text from various domains, sources, and time periods to observe the word formation of inflected words. The lemmatizer achieves an accuracy of 96.36% when tested against a manually annotated test dataset by trained linguists and demonstrates competitive performance on three previously published Bangla lemmatization datasets. We are making the code and datasets publicly available at https://github.com/eblict-gigatech/BanLemma in order to contribute to the further advancement of Bangla NLP.
BenCoref: A Multi-Domain Dataset of Nominal Phrases and Pronominal Reference Annotations
Rohan, Shadman, Hossain, Mojammel, Rashid, Mohammad Mamun Or, Mohammed, Nabeel
Coreference Resolution is a well studied problem in NLP. While widely studied for English and other resource-rich languages, research on coreference resolution in Bengali largely remains unexplored due to the absence of relevant datasets. Bengali, being a low-resource language, exhibits greater morphological richness compared to English. In this article, we introduce a new dataset, BenCoref, comprising coreference annotations for Bengali texts gathered from four distinct domains. This relatively small dataset contains 5200 mention annotations forming 502 mention clusters within 48,569 tokens. We describe the process of creating this dataset and report performance of multiple models trained using BenCoref. We expect that our work provides some valuable insights on the variations in coreference phenomena across several domains in Bengali and encourages the development of additional resources for Bengali. Furthermore, we found poor crosslingual performance at zero-shot setting from English, highlighting the need for more language-specific resources for this task.
SentiGOLD: A Large Bangla Gold Standard Multi-Domain Sentiment Analysis Dataset and its Evaluation
Islam, Md. Ekramul, Chowdhury, Labib, Khan, Faisal Ahamed, Hossain, Shazzad, Hossain, Sourave, Rashid, Mohammad Mamun Or, Mohammed, Nabeel, Amin, Mohammad Ruhul
This study introduces SentiGOLD, a Bangla multi-domain sentiment analysis dataset. Comprising 70,000 samples, it was created from diverse sources and annotated by a gender-balanced team of linguists. SentiGOLD adheres to established linguistic conventions agreed upon by the Government of Bangladesh and a Bangla linguistics committee. Unlike English and other languages, Bangla lacks standard sentiment analysis datasets due to the absence of a national linguistics framework. The dataset incorporates data from online video comments, social media posts, blogs, news, and other sources while maintaining domain and class distribution rigorously. It spans 30 domains (e.g., politics, entertainment, sports) and includes 5 sentiment classes (strongly negative, weakly negative, neutral, and strongly positive). The annotation scheme, approved by the national linguistics committee, ensures a robust Inter Annotator Agreement (IAA) with a Fleiss' kappa score of 0.88. Intra- and cross-dataset evaluation protocols are applied to establish a standard classification system. Cross-dataset evaluation on the noisy SentNoB dataset presents a challenging test scenario. Additionally, zero-shot experiments demonstrate the generalizability of SentiGOLD. The top model achieves a macro f1 score of 0.62 (intra-dataset) across 5 classes, setting a benchmark, and 0.61 (cross-dataset from SentNoB) across 3 classes, comparable to the state-of-the-art. Fine-tuned sentiment analysis model can be accessed at https://sentiment.bangla.gov.bd.
LMFLOSS: A Hybrid Loss For Imbalanced Medical Image Classification
Sadi, Abu Adnan, Chowdhury, Labib, Jahan, Nursrat, Rafi, Mohammad Newaz Sharif, Chowdhury, Radeya, Khan, Faisal Ahamed, Mohammed, Nabeel
Automatic medical image classification is a very important field where the use of AI has the potential to have a real social impact. However, there are still many challenges that act as obstacles to making practically effective solutions. One of those is the fact that most of the medical imaging datasets have a class imbalance problem. This leads to the fact that existing AI techniques, particularly neural network-based deep-learning methodologies, often perform poorly in such scenarios. Thus this makes this area an interesting and active research focus for researchers. In this study, we propose a novel loss function to train neural network models to mitigate this critical issue in this important field. Through rigorous experiments on three independently collected datasets of three different medical imaging domains, we empirically show that our proposed loss function consistently performs well with an improvement between 2%-10% macro f1 when compared to the baseline models. We hope that our work will precipitate new research toward a more generalized approach to medical image classification.
Dynamic Rectification Knowledge Distillation
Amik, Fahad Rahman, Tasin, Ahnaf Ismat, Ahmed, Silvia, Elahi, M. M. Lutfe, Mohammed, Nabeel
Knowledge Distillation is a technique which aims to utilize dark knowledge to compress and transfer information from a vast, well-trained neural network (teacher model) to a smaller, less capable neural network (student model) with improved inference efficiency. This approach of distilling knowledge has gained popularity as a result of the prohibitively complicated nature of such cumbersome models for deployment on edge computing devices. Generally, the teacher models used to teach smaller student models are cumbersome in nature and expensive to train. To eliminate the necessity for a cumbersome teacher model completely, we propose a simple yet effective knowledge distillation framework that we termed Dynamic Rectification Knowledge Distillation (DR-KD). Our method transforms the student into its own teacher, and if the self-teacher makes wrong predictions while distilling information, the error is rectified prior to the knowledge being distilled. Specifically, the teacher targets are dynamically tweaked by the agency of ground-truth while distilling the knowledge gained from traditional training. Our proposed DR-KD performs remarkably well in the absence of a sophisticated cumbersome teacher model and achieves comparable performance to existing state-of-the-art teacher-free knowledge distillation frameworks when implemented by a low-cost dynamic mannered teacher. Our approach is all-encompassing and can be utilized for any deep neural network training that requires categorization or object recognition. DR-KD enhances the test accuracy on Tiny ImageNet by 2.65% over prominent baseline models, which is significantly better than any other knowledge distillation approach while requiring no additional training costs.
Curricular SincNet: Towards Robust Deep Speaker Recognition by Emphasizing Hard Samples in Latent Space
Chowdhury, Labib, Kamal, Mustafa, Hasan, Najia, Mohammed, Nabeel
Deep learning models have become an increasingly preferred option for biometric recognition systems, such as speaker recognition. SincNet, a deep neural network architecture, gained popularity in speaker recognition tasks due to its parameterized sinc functions that allow it to work directly on the speech signal. The original SincNet architecture uses the softmax loss, which may not be the most suitable choice for recognition-based tasks. Such loss functions do not impose inter-class margins nor differentiate between easy and hard training samples. Curriculum learning, particularly those leveraging angular margin-based losses, has proven very successful in other biometric applications such as face recognition. The advantage of such a curriculum learning-based techniques is that it will impose inter-class margins as well as taking to account easy and hard samples. In this paper, we propose Curricular SincNet (CL-SincNet), an improved SincNet model where we use a curricular loss function to train the SincNet architecture. The proposed model is evaluated on multiple datasets using intra-dataset and inter-dataset evaluation protocols. In both settings, the model performs competitively with other previously published work. In the case of inter-dataset testing, it achieves the best overall results with a reduction of 4\% error rate compare to SincNet and other published work.