Goto

Collaborating Authors

 Mitra, Urbashi


Generative Multi-Agent Q-Learning for Policy Optimization: Decentralized Wireless Networks

arXiv.org Artificial Intelligence

Q-learning is a widely used reinforcement learning (RL) algorithm for optimizing wireless networks, but faces challenges with large state-spaces. Recently proposed multi-environment mixed Q-learning (MEMQ) algorithm addresses these challenges by employing multiple Q-learning algorithms across multiple synthetically generated, distinct but structurally related environments, so-called digital cousins. In this paper, we propose a novel multi-agent MEMQ (M-MEMQ) for cooperative decentralized wireless networks with multiple networked transmitters (TXs) and base stations (BSs). TXs do not have access to global information (joint state and actions). The new concept of coordinated and uncoordinated states is introduced. In uncoordinated states, TXs act independently to minimize their individual costs and update local Q-functions. In coordinated states, TXs use a Bayesian approach to estimate the joint state and update the joint Q-functions. The cost of information-sharing scales linearly with the number of TXs and is independent of the joint state-action space size. Several theoretical guarantees, including deterministic and probabilistic convergence, bounds on estimation error variance, and the probability of misdetecting the joint states, are given. Numerical simulations show that M-MEMQ outperforms several decentralized and centralized training with decentralized execution (CTDE) multi-agent RL algorithms by achieving 55% lower average policy error (APE), 35% faster convergence, 50% reduced runtime complexity, and 45% less sample complexity. Furthermore, M-MEMQ achieves comparable APE with significantly lower complexity than centralized methods. Simulations validate the theoretical analyses.


A Multi-Agent Multi-Environment Mixed Q-Learning for Partially Decentralized Wireless Network Optimization

arXiv.org Artificial Intelligence

Q-learning is a powerful tool for network control and policy optimization in wireless networks, but it struggles with large state spaces. Recent advancements, like multi-environment mixed Q-learning (MEMQ), improves performance and reduces complexity by integrating multiple Q-learning algorithms across multiple related environments so-called digital cousins. However, MEMQ is designed for centralized single-agent networks and is not suitable for decentralized or multi-agent networks. To address this challenge, we propose a novel multi-agent MEMQ algorithm for partially decentralized wireless networks with multiple mobile transmitters (TXs) and base stations (BSs), where TXs do not have access to each other's states and actions. In uncoordinated states, TXs act independently to minimize their individual costs. In coordinated states, TXs use a Bayesian approach to estimate the joint state based on local observations and share limited information with leader TX to minimize joint cost. The cost of information sharing scales linearly with the number of TXs and is independent of the joint state-action space size. The proposed scheme is 50% faster than centralized MEMQ with only a 20% increase in average policy error (APE) and is 25% faster than several advanced decentralized Q-learning algorithms with 40% less APE. The convergence of the algorithm is also demonstrated.


Coverage Analysis for Digital Cousin Selection -- Improving Multi-Environment Q-Learning

arXiv.org Artificial Intelligence

Q-learning is widely employed for optimizing various large-dimensional networks with unknown system dynamics. Recent advancements include multi-environment mixed Q-learning (MEMQ) algorithms, which utilize multiple independent Q-learning algorithms across multiple, structurally related but distinct environments and outperform several state-of-the-art Q-learning algorithms in terms of accuracy, complexity, and robustness. We herein conduct a comprehensive probabilistic coverage analysis to ensure optimal data coverage conditions for MEMQ algorithms. First, we derive upper and lower bounds on the expectation and variance of different coverage coefficients (CC) for MEMQ algorithms. Leveraging these bounds, we develop a simple way of comparing the utilities of multiple environments in MEMQ algorithms. This approach appears to be near optimal versus our previously proposed partial ordering approach. We also present a novel CC-based MEMQ algorithm to improve the accuracy and complexity of existing MEMQ algorithms. Numerical experiments are conducted using random network graphs with four different graph properties. Our algorithm can reduce the average policy error (APE) by 65% compared to partial ordering and is 95% faster than the exhaustive search. It also achieves 60% less APE than several state-of-the-art reinforcement learning and prior MEMQ algorithms. Additionally, we numerically verify the theoretical results and show their scalability with the action-space size.


Leveraging Digital Cousins for Ensemble Q-Learning in Large-Scale Wireless Networks

arXiv.org Artificial Intelligence

Optimizing large-scale wireless networks, including optimal resource management, power allocation, and throughput maximization, is inherently challenging due to their non-observable system dynamics and heterogeneous and complex nature. Herein, a novel ensemble Q-learning algorithm that addresses the performance and complexity challenges of the traditional Q-learning algorithm for optimizing wireless networks is presented. Ensemble learning with synthetic Markov Decision Processes is tailored to wireless networks via new models for approximating large state-space observable wireless networks. In particular, digital cousins are proposed as an extension of the traditional digital twin concept wherein multiple Q-learning algorithms on multiple synthetic Markovian environments are run in parallel and their outputs are fused into a single Q-function. Convergence analyses of key statistics and Q-functions and derivations of upper bounds on the estimation bias and variance are provided. Numerical results across a variety of real-world wireless networks show that the proposed algorithm can achieve up to 50% less average policy error with up to 40% less runtime complexity than the state-of-the-art reinforcement learning algorithms. It is also shown that theoretical results properly predict trends in the experimental results.


Multi-Timescale Ensemble Q-learning for Markov Decision Process Policy Optimization

arXiv.org Artificial Intelligence

Reinforcement learning (RL) is a classical tool to solve network control or policy optimization problems in unknown environments. The original Q-learning suffers from performance and complexity challenges across very large networks. Herein, a novel model-free ensemble reinforcement learning algorithm which adapts the classical Q-learning is proposed to handle these challenges for networks which admit Markov decision process (MDP) models. Multiple Q-learning algorithms are run on multiple, distinct, synthetically created and structurally related Markovian environments in parallel; the outputs are fused using an adaptive weighting mechanism based on the Jensen-Shannon divergence (JSD) to obtain an approximately optimal policy with low complexity. The theoretical justification of the algorithm, including the convergence of key statistics and Q-functions are provided. Numerical results across several network models show that the proposed algorithm can achieve up to 55% less average policy error with up to 50% less runtime complexity than the state-of-the-art Q-learning algorithms. Numerical results validate assumptions made in the theoretical analysis.


Sequential Experiment Design for Hypothesis Verification

arXiv.org Machine Learning

Hypothesis testing is an important problem with applications in target localization, clinical trials etc. Many active hypothesis testing strategies operate in two phases: an exploration phase and a verification phase. In the exploration phase, selection of experiments is such that a moderate level of confidence on the true hypothesis is achieved. Subsequent experiment design aims at improving the confidence level on this hypothesis to the desired level. In this paper, the focus is on the verification phase. A confidence measure is defined and active hypothesis testing is formulated as a confidence maximization problem in an infinite-horizon average-reward Partially Observable Markov Decision Process (POMDP) setting. The problem of maximizing confidence conditioned on a particular hypothesis is referred to as the hypothesis verification problem. The relationship between hypothesis testing and verification problems is established. The verification problem can be formulated as a Markov Decision Process (MDP). Optimal solutions for the verification MDP are characterized and a simple heuristic adaptive strategy for verification is proposed based on a zero-sum game interpretation of Kullback-Leibler divergences. It is demonstrated through numerical experiments that the heuristic performs better in some scenarios compared to existing methods in literature.


Policy Design for Active Sequential Hypothesis Testing using Deep Learning

arXiv.org Artificial Intelligence

Information theory has been very successful in obtaining performance limits for various problems such as communication, compression and hypothesis testing. Likewise, stochastic control theory provides a characterization of optimal policies for Partially Observable Markov Decision Processes (POMDPs) using dynamic programming. However, finding optimal policies for these problems is computationally hard in general and thus, heuristic solutions are employed in practice. Deep learning can be used as a tool for designing better heuristics in such problems. In this paper, the problem of active sequential hypothesis testing is considered. The goal is to design a policy that can reliably infer the true hypothesis using as few samples as possible by adaptively selecting appropriate queries. This problem can be modeled as a POMDP and bounds on its value function exist in literature. However, optimal policies have not been identified and various heuristics are used. In this paper, two new heuristics are proposed: one based on deep reinforcement learning and another based on a KL-divergence zero-sum game. These heuristics are compared with state-of-the-art solutions and it is demonstrated using numerical experiments that the proposed heuristics can achieve significantly better performance than existing methods in some scenarios.


Active Classification: Theory and Application to Underwater Inspection

arXiv.org Artificial Intelligence

We discuss the problem in which an autonomous vehicle must classify an object based on multiple views. We focus on the active classification setting, where the vehicle controls which views to select to best perform the classification. The problem is formulated as an extension to Bayesian active learning, and we show connections to recent theoretical guarantees in this area. We formally analyze the benefit of acting adaptively as new information becomes available. The analysis leads to a probabilistic algorithm for determining the best views to observe based on information theoretic costs. We validate our approach in two ways, both related to underwater inspection: 3D polyhedra recognition in synthetic depth maps and ship hull inspection with imaging sonar. These tasks encompass both the planning and recognition aspects of the active classification problem. The results demonstrate that actively planning for informative views can reduce the number of necessary views by up to 80% when compared to passive methods.