Goto

Collaborating Authors

 Min, Byung-Cheol


Multi-Agent LLM Actor-Critic Framework for Social Robot Navigation

arXiv.org Artificial Intelligence

Recent advances in robotics and large language models (LLMs) have sparked growing interest in human-robot collaboration and embodied intelligence. To enable the broader deployment of robots in human-populated environments, socially-aware robot navigation (SAN) has become a key research area. While deep reinforcement learning approaches that integrate human-robot interaction (HRI) with path planning have demonstrated strong benchmark performance, they often struggle to adapt to new scenarios and environments. LLMs offer a promising avenue for zero-shot navigation through commonsense inference. However, most existing LLM-based frameworks rely on centralized decision-making, lack robust verification mechanisms, and face inconsistencies in translating macro-actions into precise low-level control signals. To address these challenges, we propose SAMALM, a decentralized multi-agent LLM actor-critic framework for multi-robot social navigation. In this framework, a set of parallel LLM actors, each reflecting distinct robot personalities or configurations, directly generate control signals. These actions undergo a two-tier verification process via a global critic that evaluates group-level behaviors and individual critics that assess each robot's context. An entropy-based score fusion mechanism further enhances self-verification and re-query, improving both robustness and coordination. Experimental results confirm that SAMALM effectively balances local autonomy with global oversight, yielding socially compliant behaviors and strong adaptability across diverse multi-robot scenarios. More details and videos about this work are available at: https://sites.google.com/view/SAMALM.


SafePlan: Leveraging Formal Logic and Chain-of-Thought Reasoning for Enhanced Safety in LLM-based Robotic Task Planning

arXiv.org Artificial Intelligence

Robotics researchers increasingly leverage large language models (LLM) in robotics systems, using them as interfaces to receive task commands, generate task plans, form team coalitions, and allocate tasks among multi-robot and human agents. However, despite their benefits, the growing adoption of LLM in robotics has raised several safety concerns, particularly regarding executing malicious or unsafe natural language prompts. In addition, ensuring that task plans, team formation, and task allocation outputs from LLMs are adequately examined, refined, or rejected is crucial for maintaining system integrity. In this paper, we introduce SafePlan, a multi-component framework that combines formal logic and chain-of-thought reasoners for enhancing the safety of LLM-based robotics systems. Using the components of SafePlan, including Prompt Sanity COT Reasoner and Invariant, Precondition, and Postcondition COT reasoners, we examined the safety of natural language task prompts, task plans, and task allocation outputs generated by LLM-based robotic systems as means of investigating and enhancing system safety profile. Our results show that SafePlan outperforms baseline models by leading to 90.5% reduction in harmful task prompt acceptance while still maintaining reasonable acceptance of safe tasks.


Multimodal Audio-based Disease Prediction with Transformer-based Hierarchical Fusion Network

arXiv.org Artificial Intelligence

Audio-based disease prediction is emerging as a promising supplement to traditional medical diagnosis methods, facilitating early, convenient, and non-invasive disease detection and prevention. Multimodal fusion, which integrates features from various domains within or across bio-acoustic modalities, has proven effective in enhancing diagnostic performance. However, most existing methods in the field employ unilateral fusion strategies that focus solely on either intra-modal or inter-modal fusion. This approach limits the full exploitation of the complementary nature of diverse acoustic feature domains and bio-acoustic modalities. Additionally, the inadequate and isolated exploration of latent dependencies within modality-specific and modality-shared spaces curtails their capacity to manage the inherent heterogeneity in multimodal data. To fill these gaps, we propose a transformer-based hierarchical fusion network designed for general multimodal audio-based disease prediction. Specifically, we seamlessly integrate intra-modal and inter-modal fusion in a hierarchical manner and proficiently encode the necessary intra-modal and inter-modal complementary correlations, respectively. Comprehensive experiments demonstrate that our model achieves state-of-the-art performance in predicting three diseases: COVID-19, Parkinson's disease, and pathological dysarthria, showcasing its promising potential in a broad context of audio-based disease prediction tasks. Additionally, extensive ablation studies and qualitative analyses highlight the significant benefits of each main component within our model.


EfficientEQA: An Efficient Approach for Open Vocabulary Embodied Question Answering

arXiv.org Artificial Intelligence

Embodied Question Answering (EQA) is an essential yet challenging task for robotic home assistants. Recent studies have shown that large vision-language models (VLMs) can be effectively utilized for EQA, but existing works either focus on video-based question answering without embodied exploration or rely on closed-form choice sets. In real-world scenarios, a robotic agent must efficiently explore and accurately answer questions in open-vocabulary settings. To address these challenges, we propose a novel framework called EfficientEQA for open-vocabulary EQA, which enables efficient exploration and accurate answering. In EfficientEQA, the robot actively explores unknown environments using Semantic-Value-Weighted Frontier Exploration, a strategy that prioritizes exploration based on semantic importance provided by calibrated confidence from black-box VLMs to quickly gather relevant information. To generate accurate answers, we employ Retrieval-Augmented Generation (RAG), which utilizes BLIP to retrieve useful images from accumulated observations and VLM reasoning to produce responses without relying on predefined answer choices. Additionally, we detect observations that are highly relevant to the question as outliers, allowing the robot to determine when it has sufficient information to stop exploring and provide an answer. Experimental results demonstrate the effectiveness of our approach, showing an improvement in answering accuracy by over 15% and efficiency, measured in running steps, by over 20% compared to state-of-the-art methods.


Investigating the Impact of Trust in Multi-Human Multi-Robot Task Allocation

arXiv.org Artificial Intelligence

Trust is essential in human-robot collaboration. Even more so in multi-human multi-robot teams where trust is vital to ensure teaming cohesion in complex operational environments. Yet, at the moment, trust is rarely considered a factor during task allocation and reallocation in algorithms used in multi-human, multi-robot collaboration contexts. Prior work on trust in single-human-robot interaction has identified that including trust as a parameter in human-robot interaction significantly improves both performance outcomes and human experience with robotic systems. However, very little research has explored the impact of trust in multi-human multi-robot collaboration, specifically in the context of task allocation. In this paper, we introduce a new trust model, the Expectation Comparison Trust (ECT) model, and employ it with three trust models from prior work and a baseline no-trust model to investigate the impact of trust on task allocation outcomes in multi-human multi-robot collaboration. Our experiment involved different team configurations, including 2 humans, 2 robots, 5 humans, 5 robots, and 10 humans, 10 robots. Results showed that using trust-based models generally led to better task allocation outcomes in larger teams (10 humans and 10 robots) than in smaller teams. We discuss the implications of our findings and provide recommendations for future work on integrating trust as a variable for task allocation in multi-human, multi-robot collaboration.


REBEL: Rule-based and Experience-enhanced Learning with LLMs for Initial Task Allocation in Multi-Human Multi-Robot Teams

arXiv.org Artificial Intelligence

Multi-human multi-robot teams combine the complementary strengths of humans and robots to tackle complex tasks across diverse applications. However, the inherent heterogeneity of these teams presents significant challenges in initial task allocation (ITA), which involves assigning the most suitable tasks to each team member based on their individual capabilities before task execution. While current learning-based methods have shown promising results, they are often computationally expensive to train, and lack the flexibility to incorporate user preferences in multi-objective optimization and adapt to last-minute changes in real-world dynamic environments. To address these issues, we propose REBEL, an LLM-based ITA framework that integrates rule-based and experience-enhanced learning. By leveraging Retrieval-Augmented Generation, REBEL dynamically retrieves relevant rules and past experiences, enhancing reasoning efficiency. Additionally, REBEL can complement pre-trained RL-based ITA policies, improving situational awareness and overall team performance. Extensive experiments validate the effectiveness of our approach across various settings. More details are available at https://sites.google.com/view/ita-rebel .


ZeroSCD: Zero-Shot Street Scene Change Detection

arXiv.org Artificial Intelligence

Scene Change Detection is a challenging task in computer vision and robotics that aims to identify differences between two images of the same scene captured at different times. Traditional change detection methods rely on training models that take these image pairs as input and estimate the changes, which requires large amounts of annotated data, a costly and time-consuming process. To overcome this, we propose ZeroSCD, a zero-shot scene change detection framework that eliminates the need for training. ZeroSCD leverages pre-existing models for place recognition and semantic segmentation, utilizing their features and outputs to perform change detection. In this framework, features extracted from the place recognition model are used to estimate correspondences and detect changes between the two images. These are then combined with segmentation results from the semantic segmentation model to precisely delineate the boundaries of the detected changes. Extensive experiments on benchmark datasets demonstrate that ZeroSCD outperforms several state-of-the-art methods in change detection accuracy, despite not being trained on any of the benchmark datasets, proving its effectiveness and adaptability across different scenarios.


Personalization in Human-Robot Interaction through Preference-based Action Representation Learning

arXiv.org Artificial Intelligence

Preference-based reinforcement learning (PbRL) has shown significant promise for personalization in human-robot interaction (HRI) by explicitly integrating human preferences into the robot learning process. However, existing practices often require training a personalized robot policy from scratch, resulting in inefficient use of human feedback. In this paper, we propose preference-based action representation learning (PbARL), an efficient fine-tuning method that decouples common task structure from preference by leveraging pre-trained robot policies. Instead of directly fine-tuning the pre-trained policy with human preference, PbARL uses it as a reference for an action representation learning task that maximizes the mutual information between the pre-trained source domain and the target user preference-aligned domain. This approach allows the robot to personalize its behaviors while preserving original task performance and eliminates the need for extensive prior information from the source domain, thereby enhancing efficiency and practicality in real-world HRI scenarios. Empirical results on the Assistive Gym benchmark and a real-world user study (N=8) demonstrate the benefits of our method compared to state-of-the-art approaches.


Human-Robot Cooperative Distribution Coupling for Hamiltonian-Constrained Social Navigation

arXiv.org Artificial Intelligence

Navigating in human-filled public spaces is a critical challenge for deploying autonomous robots in real-world environments. This paper introduces NaviDIFF, a novel Hamiltonian-constrained socially-aware navigation framework designed to address the complexities of human-robot interaction and socially-aware path planning. NaviDIFF integrates a port-Hamiltonian framework to model dynamic physical interactions and a diffusion model to manage uncertainty in human-robot cooperation. The framework leverages a spatial-temporal transformer to capture social and temporal dependencies, enabling more accurate pedestrian strategy predictions and port-Hamiltonian dynamics construction. Additionally, reinforcement learning from human feedback is employed to fine-tune robot policies, ensuring adaptation to human preferences and social norms. Extensive experiments demonstrate that NaviDIFF outperforms state-of-the-art methods in social navigation tasks, offering improved stability, efficiency, and adaptability.


PrefMMT: Modeling Human Preferences in Preference-based Reinforcement Learning with Multimodal Transformers

arXiv.org Artificial Intelligence

Preference-based reinforcement learning (PbRL) shows promise in aligning robot behaviors with human preferences, but its success depends heavily on the accurate modeling of human preferences through reward models. Most methods adopt Markovian assumptions for preference modeling (PM), which overlook the temporal dependencies within robot behavior trajectories that impact human evaluations. While recent works have utilized sequence modeling to mitigate this by learning sequential non-Markovian rewards, they ignore the multimodal nature of robot trajectories, which consist of elements from two distinctive modalities: state and action. As a result, they often struggle to capture the complex interplay between these modalities that significantly shapes human preferences. In this paper, we propose a multimodal sequence modeling approach for PM by disentangling state and action modalities. We introduce a multimodal transformer network, named PrefMMT, which hierarchically leverages intra-modal temporal dependencies and inter-modal state-action interactions to capture complex preference patterns. We demonstrate that PrefMMT consistently outperforms state-of-the-art PM baselines on locomotion tasks from the D4RL benchmark and manipulation tasks from the Meta-World benchmark.