McDaniel, Colin
The Shrinking Landscape of Linguistic Diversity in the Age of Large Language Models
Sourati, Zhivar, Karimi-Malekabadi, Farzan, Ozcan, Meltem, McDaniel, Colin, Ziabari, Alireza, Trager, Jackson, Tak, Ala, Chen, Meng, Morstatter, Fred, Dehghani, Morteza
Language is far more than a communication tool. A wealth of information - including but not limited to the identities, psychological states, and social contexts of its users - can be gleaned through linguistic markers, and such insights are routinely leveraged across diverse fields ranging from product development and marketing to healthcare. In four studies utilizing experimental and observational methods, we demonstrate that the widespread adoption of large language models (LLMs) as writing assistants is linked to notable declines in linguistic diversity and may interfere with the societal and psychological insights language provides. We show that while the core content of texts is retained when LLMs polish and rewrite texts, not only do they homogenize writing styles, but they also alter stylistic elements in a way that selectively amplifies certain dominant characteristics or biases while suppressing others - emphasizing conformity over individuality. By varying LLMs, prompts, classifiers, and contexts, we show that these trends are robust and consistent. Our findings highlight a wide array of risks associated with linguistic homogenization, including compromised diagnostic processes and personalization efforts, the exacerbation of existing divides and barriers to equity in settings like personnel selection where language plays a critical role in assessing candidates' qualifications, communication skills, and cultural fit, and the undermining of efforts for cultural preservation.
Secret Keepers: The Impact of LLMs on Linguistic Markers of Personal Traits
Sourati, Zhivar, Ozcan, Meltem, McDaniel, Colin, Ziabari, Alireza, Wen, Nuan, Tak, Ala, Morstatter, Fred, Dehghani, Morteza
Prior research has established associations between individuals' language usage and their personal traits; our linguistic patterns reveal information about our personalities, emotional states, and beliefs. However, with the increasing adoption of Large Language Models (LLMs) as writing assistants in everyday writing, a critical question emerges: are authors' linguistic patterns still predictive of their personal traits when LLMs are involved in the writing process? We investigate the impact of LLMs on the linguistic markers of demographic and psychological traits, specifically examining three LLMs -- GPT3.5, Llama 2, and Gemini -- across six different traits: gender, age, political affiliation, personality, empathy, and morality. Our findings indicate that although the use of LLMs slightly reduces the predictive power of linguistic patterns over authors' personal traits, the significant changes are infrequent, and the use of LLMs does not fully diminish the predictive power of authors' linguistic patterns over their personal traits. We also note that some theoretically established lexical-based linguistic markers lose their reliability as predictors when LLMs are used in the writing process. Our findings have important implications for the study of linguistic markers of personal traits in the age of LLMs.