Mathews, Rajiv
Learning from straggler clients in federated learning
Hard, Andrew, Girgis, Antonious M., Amid, Ehsan, Augenstein, Sean, McConnaughey, Lara, Mathews, Rajiv, Anil, Rohan
How well do existing federated learning algorithms learn from client devices that return model updates with a significant time delay? Is it even possible to learn effectively from clients that report back minutes, hours, or days after being scheduled? We answer these questions by developing Monte Carlo simulations of client latency that are guided by real-world applications. We study synchronous optimization algorithms like FedAvg and FedAdam as well as the asynchronous FedBuff algorithm, and observe that all these existing approaches struggle to learn from severely delayed clients. To improve upon this situation, we experiment with modifications, including distillation regularization and exponential moving averages of model weights. Finally, we introduce two new algorithms, FARe-DUST and FeAST-on-MSG, based on distillation and averaging, respectively. Experiments with the EMNIST, CIFAR-100, and StackOverflow benchmark federated learning tasks demonstrate that our new algorithms outperform existing ones in terms of accuracy for straggler clients, while also providing better trade-offs between training time and total accuracy.
The Gift of Feedback: Improving ASR Model Quality by Learning from User Corrections through Federated Learning
Zhou, Lillian, Ding, Yuxin, Chen, Mingqing, Zhang, Harry, Prabhavalkar, Rohit, Guliani, Dhruv, Motta, Giovanni, Mathews, Rajiv
Automatic speech recognition (ASR) models are typically trained on large datasets of transcribed speech. As language evolves and new terms come into use, these models can become outdated and stale. In the context of models trained on the server but deployed on edge devices, errors may result from the mismatch between server training data and actual on-device usage. In this work, we seek to continually learn from on-device user corrections through Federated Learning (FL) to address this issue. We explore techniques to target fresh terms that the model has not previously encountered, learn long-tail words, and mitigate catastrophic forgetting. In experimental evaluations, we find that the proposed techniques improve model recognition of fresh terms, while preserving quality on the overall language distribution.
Unintended Memorization in Large ASR Models, and How to Mitigate It
Wang, Lun, Thakkar, Om, Mathews, Rajiv
It is well-known that neural networks can unintentionally memorize their training examples, causing privacy concerns. However, auditing memorization in large non-auto-regressive automatic speech recognition (ASR) models has been challenging due to the high compute cost of existing methods such as hardness calibration. In this work, we design a simple auditing method to measure memorization in large ASR models without the extra compute overhead. Concretely, we speed up randomly-generated utterances to create a mapping between vocal and text information that is difficult to learn from typical training examples. Hence, accurate predictions only for sped-up training examples can serve as clear evidence for memorization, and the corresponding accuracy can be used to measure memorization. Using the proposed method, we showcase memorization in the state-of-the-art ASR models. To mitigate memorization, we tried gradient clipping during training to bound the influence of any individual example on the final model. We empirically show that clipping each example's gradient can mitigate memorization for sped-up training examples with up to 16 repetitions in the training set. Furthermore, we show that in large-scale distributed training, clipping the average gradient on each compute core maintains neutral model quality and compute cost while providing strong privacy protection.
Heterogeneous Federated Learning Using Knowledge Codistillation
Lichtarge, Jared, Amid, Ehsan, Kumar, Shankar, Yang, Tien-Ju, Anil, Rohan, Mathews, Rajiv
Federated Averaging, and many federated learning algorithm variants which build upon it, have a limitation: all clients must share the same model architecture. This results in unused modeling capacity on many clients, which limits model performance. To address this issue, we propose a method that involves training a small model on the entire pool and a larger model on a subset of clients with higher capacity. The models exchange information bidirectionally via knowledge distillation, utilizing an unlabeled dataset on a server without sharing parameters. We present two variants of our method, which improve upon federated averaging on image classification and language modeling tasks. We show this technique can be useful even if only out-of-domain or limited in-domain distillation data is available. Additionally, the bi-directional knowledge distillation allows for domain transfer between the models when different pool populations introduce domain shift.
Training Production Language Models without Memorizing User Data
Ramaswamy, Swaroop, Thakkar, Om, Mathews, Rajiv, Andrew, Galen, McMahan, H. Brendan, Beaufays, Françoise
This paper presents the first consumer-scale next-word prediction (NWP) model trained with Federated Learning (FL) while leveraging the Differentially Private Federated Averaging (DP-FedAvg) technique. There has been prior work on building practical FL infrastructure, including work demonstrating the feasibility of training language models on mobile devices using such infrastructure. It has also been shown (in simulations on a public corpus) that it is possible to train NWP models with user-level differential privacy using the DP-FedAvg algorithm. Nevertheless, training production-quality NWP models with DP-FedAvg in a real-world production environment on a heterogeneous fleet of mobile phones requires addressing numerous challenges. For instance, the coordinating central server has to keep track of the devices available at the start of each round and sample devices uniformly at random from them, while ensuring \emph{secrecy of the sample}, etc. Unlike all prior privacy-focused FL work of which we are aware, for the first time we demonstrate the deployment of a differentially private mechanism for the training of a production neural network in FL, as well as the instrumentation of the production training infrastructure to perform an end-to-end empirical measurement of unintended memorization.
Understanding Unintended Memorization in Federated Learning
Thakkar, Om, Ramaswamy, Swaroop, Mathews, Rajiv, Beaufays, Françoise
Recent works have shown that generative sequence models (e.g., language models) have a tendency to memorize rare or unique sequences in the training data. Since useful models are often trained on sensitive data, to ensure the privacy of the training data it is critical to identify and mitigate such unintended memorization. Federated Learning (FL) has emerged as a novel framework for large-scale distributed learning tasks. However, it differs in many aspects from the well-studied central learning setting where all the data is stored at the central server. In this paper, we initiate a formal study to understand the effect of different components of canonical FL on unintended memorization in trained models, comparing with the central learning setting. Our results show that several differing components of FL play an important role in reducing unintended memorization. Specifically, we observe that the clustering of data according to users---which happens by design in FL---has a significant effect in reducing such memorization, and using the method of Federated Averaging for training causes a further reduction. We also show that training with a strong user-level differential privacy guarantee results in models that exhibit the least amount of unintended memorization.
Federated Evaluation of On-device Personalization
Wang, Kangkang, Mathews, Rajiv, Kiddon, Chloé, Eichner, Hubert, Beaufays, Françoise, Ramage, Daniel
Federated learning is a distributed, on-device computation framework that enables training global models without exporting sensitive user data to servers. In this work, we describe methods to extend the federation framework to evaluate strategies for personalization of global models. We present tools to analyze the effects of personalization and evaluate conditions under which personalization yields desirable models. We report on our experiments personalizing a language model for a virtual keyboard for smartphones with a population of tens of millions of users. We show that a significant fraction of users benefit from personalization.