Goto

Collaborating Authors

 Marvi, Sajad


Learning Appearance and Motion Cues for Panoptic Tracking

arXiv.org Artificial Intelligence

Panoptic tracking enables pixel-level scene interpretation of videos by integrating instance tracking in panoptic segmentation. This provides robots with a spatio-temporal understanding of the environment, an essential attribute for their operation in dynamic environments. In this paper, we propose a novel approach for panoptic tracking that simultaneously captures general semantic information and instance-specific appearance and motion features. Unlike existing methods that overlook dynamic scene attributes, our approach leverages both appearance and motion cues through dedicated network heads. These interconnected heads employ multi-scale deformable convolutions that reason about scene motion offsets with semantic context and motion-enhanced appearance features to learn tracking embeddings. Furthermore, we introduce a novel two-step fusion module that integrates the outputs from both heads by first matching instances from the current time step with propagated instances from previous time steps and subsequently refines associations using motion-enhanced appearance embeddings, improving robustness in challenging scenarios. Extensive evaluations of our proposed \netname model on two benchmark datasets demonstrate that it achieves state-of-the-art performance in panoptic tracking accuracy, surpassing prior methods in maintaining object identities over time. To facilitate future research, we make the code available at http://panoptictracking.cs.uni-freiburg.de


Evidential Uncertainty Estimation for Multi-Modal Trajectory Prediction

arXiv.org Artificial Intelligence

Accurate trajectory prediction is crucial for autonomous driving, yet uncertainty in agent behavior and perception noise makes it inherently challenging. While multi-modal trajectory prediction models generate multiple plausible future paths with associated probabilities, effectively quantifying uncertainty remains an open problem. In this work, we propose a novel multi-modal trajectory prediction approach based on evidential deep learning that estimates both positional and mode probability uncertainty in real time. Our approach leverages a Normal Inverse Gamma distribution for positional uncertainty and a Dirichlet distribution for mode uncertainty. Unlike sampling-based methods, it infers both types of uncertainty in a single forward pass, significantly improving efficiency. Additionally, we experimented with uncertainty-driven importance sampling to improve training efficiency by prioritizing underrepresented high-uncertainty samples over redundant ones. We perform extensive evaluations of our method on the Argoverse 1 and Argoverse 2 datasets, demonstrating that it provides reliable uncertainty estimates while maintaining high trajectory prediction accuracy.


Traffic and Safety Rule Compliance of Humans in Diverse Driving Situations

arXiv.org Artificial Intelligence

In recent years, autonomous vehicles (AVs) have gained significant attention due to their potential to reduce traffic fatalities. The widespread adoption of AV technology is contingent not only on technical performance but also on public trust, with concerns centering on safety and potential technological malfunctions [1, 2]. A key factor in improving trust in autonomous systems is the ability to understand and replicate human driving behavior. However, worldwide, road accidents cause over 1.19 million deaths annually, with a majority resulting from human error [3], hence following human driving pattern is not always desired. Since the majority of accidents are caused by human error, analyzing human driving data allows us to identify common mistakes and undesirable driving patterns. This understanding is crucial for training machine learning models, such as those used in behavior cloning, where the goal is to mimic human driving behavior. Identifying undesirable driving patterns is especially useful for achieving a defensive driving behavior, which is proven to play a significant role in increasing passenger comfort and trust in AVs [4].


Uncertainty-aware Panoptic Segmentation

arXiv.org Artificial Intelligence

Reliable scene understanding is indispensable for modern autonomous systems. Current learning-based methods typically try to maximize their performance based on segmentation metrics that only consider the quality of the segmentation. However, for the safe operation of a system in the real world it is crucial to consider the uncertainty in the prediction as well. In this work, we introduce the novel task of uncertainty-aware panoptic segmentation, which aims to predict per-pixel semantic and instance segmentations, together with per-pixel uncertainty estimates. We define two novel metrics to facilitate its quantitative analysis, the uncertainty-aware Panoptic Quality (uPQ) and the panoptic Expected Calibration Error (pECE). We further propose the novel top-down Evidential Panoptic Segmentation Network (EvPSNet) to solve this task. Our architecture employs a simple yet effective panoptic fusion module that leverages the predicted uncertainties. Furthermore, we provide several strong baselines combining state-of-the-art panoptic segmentation networks with sampling-free uncertainty estimation techniques. Extensive evaluations show that our EvPSNet achieves the new state-of-the-art for the standard Panoptic Quality (PQ), as well as for our uncertainty-aware panoptic metrics. We make the code available at: \url{https://github.com/kshitij3112/EvPSNet}