Mao, Lingjun
Grounding Language in Multi-Perspective Referential Communication
Tang, Zineng, Mao, Lingjun, Suhr, Alane
We introduce a task and dataset for referring expression generation and comprehension in multi-agent embodied environments. In this task, two agents in a shared scene must take into account one another's visual perspective, which may be different from their own, to both produce and understand references to objects in a scene and the spatial relations between them. We collect a dataset of 2,970 humanwritten referring expressions, each paired with human comprehension judgments, and evaluate the performance of automated models as speakers and listeners paired with human partners, finding that model performance in both reference generation and comprehension lags behind that of pairs of human agents. Finally, we experiment training an open-weight speaker model with evidence of communicative success Figure 1: Example scene from our environment and when paired with a listener, resulting in dataset. The center image shows the speaker on the left an improvement from 58.9 to 69.3% in communicative and the listener on the right with their respective fields success and even outperforming the of view (FOV). The speaker refers to the target object, strongest proprietary model.
Biomedical Visual Instruction Tuning with Clinician Preference Alignment
Cui, Hejie, Mao, Lingjun, Liang, Xin, Zhang, Jieyu, Ren, Hui, Li, Quanzheng, Li, Xiang, Yang, Carl
Recent advancements in multimodal foundation models have showcased impressive capabilities in understanding and reasoning with visual and textual information. Adapting these foundation models trained for general usage to specialized domains like biomedicine requires large-scale domain-specific instruction datasets. While existing works have explored curating such datasets automatically, the resultant datasets are not explicitly aligned with domain expertise. In this work, we propose a data-centric framework, Biomedical Visual Instruction Tuning with Clinician Preference Alignment (BioMed-VITAL), that incorporates clinician preferences into both stages of generating and selecting instruction data for tuning biomedical multimodal foundation models. First, during the generation stage, we prompt the GPT-4V generator with a diverse set of clinician-selected demonstrations for preference-aligned data candidate generation. Then, during the selection phase, we train a separate selection model, which explicitly distills clinician and policy-guided model preferences into a rating function to select high-quality data for medical instruction tuning. Results show that the model tuned with the instruction-following data from our method demonstrates a significant improvement in open visual chat (18.5% relatively) and medical VQA (win rate up to 81.73%). Our instruction-following data and models are available at BioMed-VITAL.github.io.
BG-HGNN: Toward Scalable and Efficient Heterogeneous Graph Neural Network
Su, Junwei, Mao, Lingjun, Wu, Chuan
Many computer vision and machine learning problems are modelled as learning tasks on heterogeneous graphs, featuring a wide array of relations from diverse types of nodes and edges. Heterogeneous graph neural networks (HGNNs) stand out as a promising neural model class designed for heterogeneous graphs. Built on traditional GNNs, existing HGNNs employ different parameter spaces to model the varied relationships. However, the practical effectiveness of existing HGNNs is often limited to simple heterogeneous graphs with few relation types. This paper first highlights and demonstrates that the standard approach employed by existing HGNNs inevitably leads to parameter explosion and relation collapse, making HGNNs less effective or impractical for complex heterogeneous graphs with numerous relation types. To overcome this issue, we introduce a novel framework, Blend&Grind-HGNN (BG-HGNN), which effectively tackles the challenges by carefully integrating different relations into a unified feature space manageable by a single set of parameters. This results in a refined HGNN method that is more efficient and effective in learning from heterogeneous graphs, especially when the number of relations grows. Our empirical studies illustrate that BG-HGNN significantly surpasses existing HGNNs in terms of parameter efficiency (up to 28.96 $\times$), training throughput (up to 8.12 $\times$), and accuracy (up to 1.07 $\times$).
AI Agent as Urban Planner: Steering Stakeholder Dynamics in Urban Planning via Consensus-based Multi-Agent Reinforcement Learning
Qian, Kejiang, Mao, Lingjun, Liang, Xin, Ding, Yimin, Gao, Jin, Wei, Xinran, Guo, Ziyi, Li, Jiajie
In urban planning, land use readjustment plays a pivotal role in aligning land use configurations with the current demands for sustainable urban development. However, present-day urban planning practices face two main issues. Firstly, land use decisions are predominantly dependent on human experts. Besides, while resident engagement in urban planning can promote urban sustainability and livability, it is challenging to reconcile the diverse interests of stakeholders. To address these challenges, we introduce a Consensus-based Multi-Agent Reinforcement Learning framework for real-world land use readjustment. This framework serves participatory urban planning, allowing diverse intelligent agents as stakeholder representatives to vote for preferred land use types. Within this framework, we propose a novel consensus mechanism in reward design to optimize land utilization through collective decision making. To abstract the structure of the complex urban system, the geographic information of cities is transformed into a spatial graph structure and then processed by graph neural networks. Comprehensive experiments on both traditional top-down planning and participatory planning methods from real-world communities indicate that our computational framework enhances global benefits and accommodates diverse interests, leading to improved satisfaction across different demographic groups. By integrating Multi-Agent Reinforcement Learning, our framework ensures that participatory urban planning decisions are more dynamic and adaptive to evolving community needs and provides a robust platform for automating complex real-world urban planning processes.