Maiorca, Valentino
Mapping representations in Reinforcement Learning via Semantic Alignment for Zero-Shot Stitching
Ricciardi, Antonio Pio, Maiorca, Valentino, Moschella, Luca, Marin, Riccardo, Rodolà, Emanuele
Deep Reinforcement Learning (RL) models often fail to generalize when even small changes occur in the environment's observations or task requirements. Addressing these shifts typically requires costly retraining, limiting the reusability of learned policies. In this paper, we build on recent work in semantic alignment to propose a zero-shot method for mapping between latent spaces across different agents trained on different visual and task variations. Specifically, we learn a transformation that maps embeddings from one agent's encoder to another agent's encoder without further fine-tuning. Our approach relies on a small set of "anchor" observations that are semantically aligned, which we use to estimate an affine or orthogonal transform. Once the transformation is found, an existing controller trained for one domain can interpret embeddings from a different (existing) encoder in a zero-shot fashion, skipping additional trainings. We empirically demonstrate that our framework preserves high performance under visual and task domain shifts. We empirically demonstrate zero-shot stitching performance on the CarRacing environment with changing background and task. By allowing modular re-assembly of existing policies, it paves the way for more robust, compositional RL in dynamically changing environments.
ResiDual Transformer Alignment with Spectral Decomposition
Basile, Lorenzo, Maiorca, Valentino, Bortolussi, Luca, Rodolà, Emanuele, Locatello, Francesco
When examined through the lens of their residual streams, a puzzling property emerges in transformer networks: residual contributions (e.g., attention heads) sometimes specialize in specific tasks or input attributes. In this paper, we analyze this phenomenon in vision transformers, focusing on the spectral geometry of residuals, and explore its implications for modality alignment in vision-language models. First, we link it to the intrinsically low-dimensional structure of visual head representations, zooming into their principal components and showing that they encode specialized roles across a wide variety of input data distributions. Then, we analyze the effect of head specialization in multimodal models, focusing on how improved alignment between text and specialized heads impacts zero-shot classification performance. This specialization-performance link consistently holds across diverse pre-training data, network sizes, and objectives, demonstrating a powerful new mechanism for boosting zero-shot classification through targeted alignment. Ultimately, we translate these insights into actionable terms by introducing ResiDual, a technique for spectral alignment of the residual stream. Much like panning for gold, it lets the noise from irrelevant unit principal components (i.e., attributes) wash away to amplify task-relevant ones. Remarkably, this dual perspective on modality alignment yields fine-tuning level performances on different data distributions while modeling an extremely interpretable and parameter-efficient transformation, as we extensively show on more than 50 (pre-trained network, dataset) pairs.
Latent Space Translation via Inverse Relative Projection
Maiorca, Valentino, Moschella, Luca, Fumero, Marco, Locatello, Francesco, Rodolà, Emanuele
The emergence of similar representations between independently trained neural models has sparked significant interest in the representation learning community, leading to the development of various methods to obtain communication between latent spaces. "Latent space communication" can be achieved in two ways: i) by independently mapping the original spaces to a shared or relative one; ii) by directly estimating a transformation from a source latent space to a target one. In this work, we combine the two into a novel method to obtain latent space translation through the relative space. By formalizing the invertibility of angle-preserving relative representations and assuming the scale invariance of decoder modules in neural models, we can effectively use the relative space as an intermediary, independently projecting onto and from other semantically similar spaces. Extensive experiments over various architectures and datasets validate our scale invariance assumption and demonstrate the high accuracy of our method in latent space translation. We also apply our method to zero-shot stitching between arbitrary pre-trained text and image encoders and their classifiers, even across modalities. Our method has significant potential for facilitating the reuse of models in a practical manner via compositionality.
Latent Functional Maps
Fumero, Marco, Pegoraro, Marco, Maiorca, Valentino, Locatello, Francesco, Rodolà, Emanuele
Neural models learn data representations that lie on low-dimensional manifolds, yet modeling the relation between these representational spaces is an ongoing challenge. By integrating spectral geometry principles into neural modeling, we show that this problem can be better addressed in the functional domain, mitigating complexity, while enhancing interpretability and performances on downstream tasks. To this end, we introduce a multi-purpose framework to the representation learning community, which allows to: (i) compare different spaces in an interpretable way and measure their intrinsic similarity; (ii) find correspondences between them, both in unsupervised and weakly supervised settings, and (iii) to effectively transfer representations between distinct spaces. We validate our framework on various applications, ranging from stitching to retrieval tasks, demonstrating that latent functional maps can serve as a swiss-army knife for representation alignment.
Scalable unsupervised alignment of general metric and non-metric structures
Vedula, Sanketh, Maiorca, Valentino, Basile, Lorenzo, Locatello, Francesco, Bronstein, Alex
Aligning data from different domains is a fundamental problem in machine learning with broad applications across very different areas, most notably aligning experimental readouts in single-cell multiomics. Mathematically, this problem can be formulated as the minimization of disagreement of pair-wise quantities such as distances and is related to the Gromov-Hausdorff and Gromov-Wasserstein distances. Computationally, it is a quadratic assignment problem (QAP) that is known to be NP-hard. Prior works attempted to solve the QAP directly with entropic or low-rank regularization on the permutation, which is computationally tractable only for modestly-sized inputs, and encode only limited inductive bias related to the domains being aligned. We consider the alignment of metric structures formulated as a discrete Gromov-Wasserstein problem and instead of solving the QAP directly, we propose to learn a related well-scalable linear assignment problem (LAP) whose solution is also a minimizer of the QAP. We also show a flexible extension of the proposed framework to general non-metric dissimilarities through differentiable ranks. We extensively evaluate our approach on synthetic and real datasets from single-cell multiomics and neural latent spaces, achieving state-of-the-art performance while being conceptually and computationally simple.
Zero-Shot Stitching in Reinforcement Learning using Relative Representations
Ricciardi, Antonio Pio, Maiorca, Valentino, Moschella, Luca, Marin, Riccardo, Rodolà, Emanuele
Visual Reinforcement Learning is a popular and powerful framework that takes full advantage of the Deep Learning breakthrough. However, it is also known that variations in the input (e.g., different colors of the panorama due to the season of the year) or the task (e.g., changing the speed limit for a car to respect) could require complete retraining of the agents. In this work, we leverage recent developments in unifying latent representations to demonstrate that it is possible to combine the components of an agent, rather than retrain it from scratch. We build upon the recent relative representations framework and adapt it for Visual RL. This allows us to create completely new agents capable of handling environment-task combinations never seen during training. Our work paves the road toward a more accessible and flexible use of reinforcement learning.
ASIF: Coupled Data Turns Unimodal Models to Multimodal Without Training
Norelli, Antonio, Fumero, Marco, Maiorca, Valentino, Moschella, Luca, Rodolà, Emanuele, Locatello, Francesco
CLIP proved that aligning visual and language spaces is key to solving many vision tasks without explicit training, but required to train image and text encoders from scratch on a huge dataset. LiT improved this by only training the text encoder and using a pre-trained vision network. In this paper, we show that a common space can be created without any training at all, using single-domain encoders (trained with or without supervision) and a much smaller amount of image-text pairs. Furthermore, our model has unique properties. Most notably, deploying a new version with updated training samples can be done in a matter of seconds. Additionally, the representations in the common space are easily interpretable as every dimension corresponds to the similarity of the input to a unique image-text pair in the multimodal dataset. Experiments on standard zero-shot visual benchmarks demonstrate the typical transfer ability of image-text models. Overall, our method represents a simple yet surprisingly strong baseline for foundation multimodal models, raising important questions on their data efficiency and on the role of retrieval in machine learning.
Latent Space Translation via Semantic Alignment
Maiorca, Valentino, Moschella, Luca, Norelli, Antonio, Fumero, Marco, Locatello, Francesco, Rodolà, Emanuele
While different neural models often exhibit latent spaces that are alike when exposed to semantically related data, this intrinsic similarity is not always immediately discernible. Towards a better understanding of this phenomenon, our work shows how representations learned from these neural modules can be translated between different pre-trained networks via simpler transformations than previously thought. An advantage of this approach is the ability to estimate these transformations using standard, well-understood algebraic procedures that have closed-form solutions. Our method directly estimates a transformation between two given latent spaces, thereby enabling effective stitching of encoders and decoders without additional training. We extensively validate the adaptability of this translation procedure in different experimental settings: across various trainings, domains, architectures (e.g., ResNet, CNN, ViT), and in multiple downstream tasks (classification, reconstruction). Notably, we show how it is possible to zero-shot stitch text encoders and vision decoders, or vice-versa, yielding surprisingly good classification performance in this multimodal setting.
From Bricks to Bridges: Product of Invariances to Enhance Latent Space Communication
Cannistraci, Irene, Moschella, Luca, Fumero, Marco, Maiorca, Valentino, Rodolà, Emanuele
It has been observed that representations learned by distinct neural networks conceal structural similarities when the models are trained under similar inductive biases. From a geometric perspective, identifying the classes of transformations and the related invariances that connect these representations is fundamental to unlocking applications, such as merging, stitching, and reusing different neural modules. However, estimating task-specific transformations a priori can be challenging and expensive due to several factors (e.g., weights initialization, training hyperparameters, or data modality). To this end, we introduce a versatile method to directly incorporate a set of invariances into the representations, constructing a product space of invariant components on top of the latent representations without requiring prior knowledge about the optimal invariance to infuse. We validate our solution on classification and reconstruction tasks, observing consistent latent similarity and downstream performance improvements in a zero-shot stitching setting. The experimental analysis comprises three modalities (vision, text, and graphs), twelve pretrained foundational models, eight benchmarks, and several architectures trained from scratch.
Bootstrapping Parallel Anchors for Relative Representations
Cannistraci, Irene, Moschella, Luca, Maiorca, Valentino, Fumero, Marco, Norelli, Antonio, Rodolà, Emanuele
The use of relative representations for latent embeddings has shown potential in enabling latent space communication and zero-shot model stitching across a wide range of applications. Nevertheless, relative representations rely on a certain amount of parallel anchors to be given as input, which can be impractical to obtain in certain scenarios. To overcome this limitation, we propose an optimization-based method to discover new parallel anchors from a limited known set (seed). Our approach can be used to find semantic correspondence between different domains, align their relative spaces, and achieve competitive results in several tasks.