Ma, Yao
Shapley-Guided Utility Learning for Effective Graph Inference Data Valuation
Chi, Hongliang, Wu, Qiong, Zhou, Zhengyi, Ma, Yao
Graph Neural Networks (GNNs) have demonstrated remarkable performance in various graph-based machine learning tasks, yet evaluating the importance of neighbors of testing nodes remains largely unexplored due to the challenge of assessing data importance without test labels. To address this gap, we propose Shapley-Guided Utility Learning (SGUL), a novel framework for graph inference data valuation. SGUL innovatively combines transferable data-specific and modelspecific features to approximate test accuracy without relying on ground truth labels. By incorporating Shapley values as a preprocessing step and using feature Shapley values as input, our method enables direct optimization of Shapley value prediction while reducing computational demands. SGUL overcomes key limitations of existing methods, including poor generalization to unseen test-time structures and indirect optimization. Experiments on diverse graph datasets demonstrate that SGUL consistently outperforms existing baselines in both inductive and transductive settings. SGUL offers an effective, efficient, and interpretable approach for quantifying the value of test-time neighbors.
Towards Graph Foundation Models: A Transferability Perspective
Wang, Yuxiang, Fan, Wenqi, Wang, Suhang, Ma, Yao
In recent years, Graph Foundation Models (GFMs) have gained significant attention for their potential to generalize across diverse graph domains and tasks. Some works focus on Domain-Specific GFMs, which are designed to address a variety of tasks within a specific domain, while others aim to create General-Purpose GFMs that extend the capabilities of domain-specific models to multiple domains. Regardless of the type, transferability is crucial for applying GFMs across different domains and tasks. However, achieving strong transferability is a major challenge due to the structural, feature, and distributional variations in graph data. To date, there has been no systematic research examining and analyzing GFMs from the perspective of transferability. To bridge the gap, we present the first comprehensive taxonomy that categorizes and analyzes existing GFMs through the lens of transferability, structuring GFMs around their application scope (domain-specific vs. general-purpose) and their approaches to knowledge acquisition and transfer. We provide a structured perspective on current progress and identify potential pathways for advancing GFM generalization across diverse graph datasets and tasks. We aims to shed light on the current landscape of GFMs and inspire future research directions in GFM development.
Exploring Graph Tasks with Pure LLMs: A Comprehensive Benchmark and Investigation
Wang, Yuxiang, Dai, Xinnan, Fan, Wenqi, Ma, Yao
Graph-structured data has become increasingly prevalent across various domains, raising the demand for effective models to handle graph tasks like node classification and link prediction. Traditional graph learning models like Graph Neural Networks (GNNs) have made significant strides, but their capabilities in handling graph data remain limited in certain contexts. In recent years, large language models (LLMs) have emerged as promising candidates for graph tasks, yet most studies focus primarily on performance benchmarks and fail to address their broader potential, including their ability to handle limited data, their transferability across tasks, and their robustness. In this work, we provide a comprehensive exploration of LLMs applied to graph tasks. We evaluate the performance of pure LLMs, including those without parameter optimization and those fine-tuned with instructions, across various scenarios. Our analysis goes beyond accuracy, assessing LLM ability to perform in few-shot/zero-shot settings, transfer across domains, understand graph structures, and demonstrate robustness in challenging scenarios. We conduct extensive experiments with 16 graph learning models alongside 6 LLMs (e.g., Llama3B, GPT-4o, Qwen-plus), comparing their performance on datasets like Cora, PubMed, ArXiv, and Products. Our findings show that LLMs, particularly those with instruction tuning, outperform traditional models in few-shot settings, exhibit strong domain transferability, and demonstrate excellent generalization and robustness. This work offers valuable insights into the capabilities of LLMs for graph learning, highlighting their advantages and potential for real-world applications, and paving the way for future research in this area. Codes and datasets are released in https://github.com/myflashbarry/LLM-benchmarking.
Unifying and Optimizing Data Values for Selection via Sequential-Decision-Making
Chi, Hongliang, Wu, Qiong, Zhou, Zhengyi, Light, Jonathan, Dodwell, Emily, Ma, Yao
Data selection has emerged as a crucial downstream application of data valuation. While existing data valuation methods have shown promise in selection tasks, the theoretical foundations and full potential of using data values for selection remain largely unexplored. In this work, we first demonstrate that data values applied for selection can be naturally reformulated as a sequential-decision-making problem, where the optimal data value can be derived through dynamic programming. We show this framework unifies and reinterprets existing methods like Data Shapley through the lens of approximate dynamic programming, specifically as myopic reward function approximations to this sequential problem. Furthermore, we analyze how sequential data selection optimality is affected when the ground-truth utility function exhibits monotonic submodularity with curvature. To address the computational challenges in obtaining optimal data values, we propose an efficient approximation scheme using learned bipartite graphs as surrogate utility models, ensuring greedy selection is still optimal when the surrogate utility is correctly specified and learned. Extensive experiments demonstrate the effectiveness of our approach across diverse datasets.
Reinforcement Learning for Quantum Circuit Design: Using Matrix Representations
Wang, Zhiyuan, Feng, Chunlin, Poon, Christopher, Huang, Lijian, Zhao, Xingjian, Ma, Yao, Fu, Tianfan, Liu, Xiao-Yang
Quantum computing promises advantages over classical computing. The manufacturing of quantum hardware is in the infancy stage, called the Noisy Intermediate-Scale Quantum (NISQ) era. A major challenge is automated quantum circuit design that map a quantum circuit to gates in a universal gate set. In this paper, we present a generic MDP modeling and employ Q-learning and DQN algorithms for quantum circuit design. By leveraging the power of deep reinforcement learning, we aim to provide an automatic and scalable approach over traditional hand-crafted heuristic methods.
A Comprehensive Survey of Small Language Models in the Era of Large Language Models: Techniques, Enhancements, Applications, Collaboration with LLMs, and Trustworthiness
Wang, Fali, Zhang, Zhiwei, Zhang, Xianren, Wu, Zongyu, Mo, Tzuhao, Lu, Qiuhao, Wang, Wanjing, Li, Rui, Xu, Junjie, Tang, Xianfeng, He, Qi, Ma, Yao, Huang, Ming, Wang, Suhang
Large language models (LLMs) have demonstrated emergent abilities in text generation, question answering, and reasoning, facilitating various tasks and domains. Despite their proficiency in various tasks, LLMs like PaLM 540B and Llama-3.1 405B face limitations due to large parameter sizes and computational demands, often requiring cloud API use which raises privacy concerns, limits real-time applications on edge devices, and increases fine-tuning costs. Additionally, LLMs often underperform in specialized domains such as healthcare and law due to insufficient domain-specific knowledge, necessitating specialized models. Therefore, Small Language Models (SLMs) are increasingly favored for their low inference latency, cost-effectiveness, efficient development, and easy customization and adaptability. These models are particularly well-suited for resource-limited environments and domain knowledge acquisition, addressing LLMs' challenges and proving ideal for applications that require localized data handling for privacy, minimal inference latency for efficiency, and domain knowledge acquisition through lightweight fine-tuning. The rising demand for SLMs has spurred extensive research and development. However, a comprehensive survey investigating issues related to the definition, acquisition, application, enhancement, and reliability of SLM remains lacking, prompting us to conduct a detailed survey on these topics. The definition of SLMs varies widely, thus to standardize, we propose defining SLMs by their capability to perform specialized tasks and suitability for resource-constrained settings, setting boundaries based on the minimal size for emergent abilities and the maximum size sustainable under resource constraints. For other aspects, we provide a taxonomy of relevant models/methods and develop general frameworks for each category to enhance and utilize SLMs effectively.
Extending Graph Condensation to Multi-Label Datasets: A Benchmark Study
Zhang, Liangliang, Bao, Haoran, Ma, Yao
As graph data grows increasingly complicate, training graph neural networks (GNNs) on large-scale datasets presents significant challenges, including computational resource constraints, data redundancy, and transmission inefficiencies. While existing graph condensation techniques have shown promise in addressing these issues, they are predominantly designed for single-label datasets, where each node is associated with a single class label. However, many real-world applications, such as social network analysis and bioinformatics, involve multi-label graph datasets, where one node can have various related labels. To deal with this problem, we extends traditional graph condensation approaches to accommodate multi-label datasets by introducing modifications to synthetic dataset initialization and condensing optimization. Through experiments on eight real-world multi-label graph datasets, we prove the effectiveness of our method. In experiment, the GCond framework, combined with K-Center initialization and binary cross-entropy loss (BCELoss), achieves best performance in general. This benchmark for multi-label graph condensation not only enhances the scalability and efficiency of GNNs for multi-label graph data, but also offering substantial benefits for diverse real-world applications.
Gradual Fine-Tuning with Graph Routing for Multi-Source Unsupervised Domain Adaptation
Ma, Yao, Louvan, Samuel, Wang, Zhunxuan
Multi-source unsupervised domain adaptation aims to leverage labeled data from multiple source domains for training a machine learning model to generalize well on a target domain without labels. Source domain selection plays a crucial role in determining the model's performance. It relies on the similarities amongst source and target domains. Nonetheless, existing work for source domain selection often involves heavyweight computational procedures, especially when dealing with numerous source domains and the need to identify the best ones from them. In this paper, we introduce a framework for gradual fine tuning (GFT) of machine learning models on multiple source domains. We represent multiple source domains as an undirected weighted graph. We then give a new generalization error bound for GFT along any path within the graph, which is used to determine the optimal path corresponding to the optimal training order. With this formulation, we introduce three lightweight graph-routing strategies which tend to minimize the error bound. Our best strategy improves $2.3\%$ of accuracy over the state-of-the-art on Natural Language Inference (NLI) task and achieves competitive performance on Sentiment Analysis (SA) task, especially a $3.9\%$ improvement on a more diverse subset of data we use for SA.
Efficient Pointwise-Pairwise Learning-to-Rank for News Recommendation
Kannen, Nithish, Ma, Yao, Burg, Gerrit J. J. van den, Faddoul, Jean Baptiste
News recommendation is a challenging task that involves personalization based on the interaction history and preferences of each user. Recent works have leveraged the power of pretrained language models (PLMs) to directly rank news items by using inference approaches that predominately fall into three categories: pointwise, pairwise, and listwise learning-to-rank. While pointwise methods offer linear inference complexity, they fail to capture crucial comparative information between items that is more effective for ranking tasks. Conversely, pairwise and listwise approaches excel at incorporating these comparisons but suffer from practical limitations: pairwise approaches are either computationally expensive or lack theoretical guarantees, and listwise methods often perform poorly in practice. In this paper, we propose a novel framework for PLM-based news recommendation that integrates both pointwise relevance prediction and pairwise comparisons in a scalable manner. We present a rigorous theoretical analysis of our framework, establishing conditions under which our approach guarantees improved performance. Extensive experiments show that our approach outperforms the state-of-the-art methods on the MIND and Adressa news recommendation datasets.
Addressing Shortcomings in Fair Graph Learning Datasets: Towards a New Benchmark
Qian, Xiaowei, Guo, Zhimeng, Li, Jialiang, Mao, Haitao, Li, Bingheng, Wang, Suhang, Ma, Yao
Fair graph learning plays a pivotal role in numerous practical applications. Recently, many fair graph learning methods have been proposed; however, their evaluation often relies on poorly constructed semi-synthetic datasets or substandard real-world datasets. In such cases, even a basic Multilayer Perceptron (MLP) can outperform Graph Neural Networks (GNNs) in both utility and fairness. In this work, we illustrate that many datasets fail to provide meaningful information in the edges, which may challenge the necessity of using graph structures in these problems. To address these issues, we develop and introduce a collection of synthetic, semi-synthetic, and real-world datasets that fulfill a broad spectrum of requirements. These datasets are thoughtfully designed to include relevant graph structures and bias information crucial for the fair evaluation of models. The proposed synthetic and semi-synthetic datasets offer the flexibility to create data with controllable bias parameters, thereby enabling the generation of desired datasets with user-defined bias values with ease. Moreover, we conduct systematic evaluations of these proposed datasets and establish a unified evaluation approach for fair graph learning models. Our extensive experimental results with fair graph learning methods across our datasets demonstrate their effectiveness in benchmarking the performance of these methods. Our datasets and the code for reproducing our experiments are available at https://github.com/XweiQ/Benchmark-GraphFairness.