Goto

Collaborating Authors

 Luo, Ziang


FASIONAD++ : Integrating High-Level Instruction and Information Bottleneck in FAt-Slow fusION Systems for Enhanced Safety in Autonomous Driving with Adaptive Feedback

arXiv.org Artificial Intelligence

Ensuring safe, comfortable, and efficient planning is crucial for autonomous driving systems. While end-to-end models trained on large datasets perform well in standard driving scenarios, they struggle with complex low-frequency events. Recent Large Language Models (LLMs) and Vision Language Models (VLMs) advancements offer enhanced reasoning but suffer from computational inefficiency. Inspired by the dual-process cognitive model "Thinking, Fast and Slow", we propose $\textbf{FASIONAD}$ -- a novel dual-system framework that synergizes a fast end-to-end planner with a VLM-based reasoning module. The fast system leverages end-to-end learning to achieve real-time trajectory generation in common scenarios, while the slow system activates through uncertainty estimation to perform contextual analysis and complex scenario resolution. Our architecture introduces three key innovations: (1) A dynamic switching mechanism enabling slow system intervention based on real-time uncertainty assessment; (2) An information bottleneck with high-level plan feedback that optimizes the slow system's guidance capability; (3) A bidirectional knowledge exchange where visual prompts enhance the slow system's reasoning while its feedback refines the fast planner's decision-making. To strengthen VLM reasoning, we develop a question-answering mechanism coupled with reward-instruct training strategy. In open-loop experiments, FASIONAD achieves a $6.7\%$ reduction in average $L2$ trajectory error and $28.1\%$ lower collision rate.


Efficient End-to-end Visual Localization for Autonomous Driving with Decoupled BEV Neural Matching

arXiv.org Artificial Intelligence

-- Accurate localization plays an important role in high-level autonomous driving systems. Conventional map matching-based localization methods solve the poses by explicitly matching map elements with sensor observations, generally sensitive to perception noise, therefore requiring costly hyper-parameter tuning. In this paper, we propose an end-to-end localization neural network which directly estimates vehicle poses from surrounding images, without explicitly matching perception results with HD maps. T o ensure efficiency and inter-pretability, a decoupled BEV neural matching-based pose solver is proposed, which estimates poses in a differentiable sampling-based matching module. Moreover, the sampling space is hugely reduced by decoupling the feature representation affected by each DoF of poses. The experimental results demonstrate that the proposed network is capable of performing decimeter level localization with mean absolute errors of 0.19m, 0.13m and 0.39 Visual localization serves as a vital component in high-level Autonomous Driving (AD) systems due to its ability to estimate vehicle poses with an economical sensor suite. In recent decades, several works have achieved extraordinary success in terms of localization accuracy and robustness [1]. A plethora of scene maps has been developed in the domain of visual localization research, yielding varying degrees of pose estimation accuracy [1]. In conventional robotic systems, visual localization systems often employ geo-tagged frames [2], [3] and visual landmark maps [4].


PriorMotion: Generative Class-Agnostic Motion Prediction with Raster-Vector Motion Field Priors

arXiv.org Artificial Intelligence

Reliable perception of spatial and motion information is crucial for safe autonomous navigation. Traditional approaches typically fall into two categories: object-centric and class-agnostic methods. While object-centric methods often struggle with missed detections, leading to inaccuracies in motion prediction, many class-agnostic methods focus heavily on encoder design, often overlooking important priors like rigidity and temporal consistency, leading to suboptimal performance, particularly with sparse LiDAR data at distant region. To address these issues, we propose $\textbf{PriorMotion}$, a generative framework that extracts rasterized and vectorized scene representations to model spatio-temporal priors. Our model comprises a BEV encoder, an Raster-Vector prior Encoder, and a Spatio-Temporal prior Generator, improving both spatial and temporal consistency in motion prediction. Additionally, we introduce a standardized evaluation protocol for class-agnostic motion prediction. Experiments on the nuScenes dataset show that PriorMotion achieves state-of-the-art performance, with further validation on advanced FMCW LiDAR confirming its robustness.


FASIONAD : FAst and Slow FusION Thinking Systems for Human-Like Autonomous Driving with Adaptive Feedback

arXiv.org Artificial Intelligence

Ensuring safe, comfortable, and efficient navigation is a critical goal for autonomous driving systems. While end-to-end models trained on large-scale datasets excel in common driving scenarios, they often struggle with rare, long-tail events. Recent progress in large language models (LLMs) has introduced enhanced reasoning capabilities, but their computational demands pose challenges for real-time decision-making and precise planning. This paper presents FASIONAD, a novel dual-system framework inspired by the cognitive model "Thinking, Fast and Slow." The fast system handles routine navigation tasks using rapid, data-driven path planning, while the slow system focuses on complex reasoning and decision-making in challenging or unfamiliar situations. A dynamic switching mechanism based on score distribution and feedback allows seamless transitions between the two systems. Visual prompts generated by the fast system enable human-like reasoning in the slow system, which provides high-quality feedback to enhance the fast system's decision-making. To evaluate FASIONAD, we introduce a new benchmark derived from the nuScenes dataset, specifically designed to differentiate fast and slow scenarios. FASIONAD achieves state-of-the-art performance on this benchmark, establishing a new standard for frameworks integrating fast and slow cognitive processes in autonomous driving. This approach paves the way for more adaptive, human-like autonomous driving systems.