Luo, Jianlan
AgiBot World Colosseo: A Large-scale Manipulation Platform for Scalable and Intelligent Embodied Systems
AgiBot-World-Contributors, null, Bu, Qingwen, Cai, Jisong, Chen, Li, Cui, Xiuqi, Ding, Yan, Feng, Siyuan, Gao, Shenyuan, He, Xindong, Huang, Xu, Jiang, Shu, Jiang, Yuxin, Jing, Cheng, Li, Hongyang, Li, Jialu, Liu, Chiming, Liu, Yi, Lu, Yuxiang, Luo, Jianlan, Luo, Ping, Mu, Yao, Niu, Yuehan, Pan, Yixuan, Pang, Jiangmiao, Qiao, Yu, Ren, Guanghui, Ruan, Cheng, Shan, Jiaqi, Shen, Yongjian, Shi, Chengshi, Shi, Mingkang, Shi, Modi, Sima, Chonghao, Song, Jianheng, Wang, Huijie, Wang, Wenhao, Wei, Dafeng, Xie, Chengen, Xu, Guo, Yan, Junchi, Yang, Cunbiao, Yang, Lei, Yang, Shukai, Yao, Maoqing, Zeng, Jia, Zhang, Chi, Zhang, Qinglin, Zhao, Bin, Zhao, Chengyue, Zhao, Jiaqi, Zhu, Jianchao
We explore how scalable robot data can address real-world challenges for generalized robotic manipulation. Introducing AgiBot World, a large-scale platform comprising over 1 million trajectories across 217 tasks in five deployment scenarios, we achieve an order-of-magnitude increase in data scale compared to existing datasets. Accelerated by a standardized collection pipeline with human-in-the-loop verification, AgiBot World guarantees high-quality and diverse data distribution. It is extensible from grippers to dexterous hands and visuo-tactile sensors for fine-grained skill acquisition. Building on top of data, we introduce Genie Operator-1 (GO-1), a novel generalist policy that leverages latent action representations to maximize data utilization, demonstrating predictable performance scaling with increased data volume. Policies pre-trained on our dataset achieve an average performance improvement of 30% over those trained on Open X-Embodiment, both in in-domain and out-of-distribution scenarios. GO-1 exhibits exceptional capability in real-world dexterous and long-horizon tasks, achieving over 60% success rate on complex tasks and outperforming prior RDT approach by 32%. By open-sourcing the dataset, tools, and models, we aim to democratize access to large-scale, high-quality robot data, advancing the pursuit of scalable and general-purpose intelligence.
Reflective Planning: Vision-Language Models for Multi-Stage Long-Horizon Robotic Manipulation
Feng, Yunhai, Han, Jiaming, Yang, Zhuoran, Yue, Xiangyu, Levine, Sergey, Luo, Jianlan
Solving complex long-horizon robotic manipulation problems requires sophisticated high-level planning capabilities, the ability to reason about the physical world, and reactively choose appropriate motor skills. Vision-language models (VLMs) pretrained on Internet data could in principle offer a framework for tackling such problems. However, in their current form, VLMs lack both the nuanced understanding of intricate physics required for robotic manipulation and the ability to reason over long horizons to address error compounding issues. In this paper, we introduce a novel test-time computation framework that enhances VLMs' physical reasoning capabilities for multi-stage manipulation tasks. At its core, our approach iteratively improves a pretrained VLM with a "reflection" mechanism - it uses a generative model to imagine future world states, leverages these predictions to guide action selection, and critically reflects on potential suboptimalities to refine its reasoning. Experimental results demonstrate that our method significantly outperforms several state-of-the-art commercial VLMs as well as other post-training approaches such as Monte Carlo Tree Search (MCTS). Videos are available at https://reflect-vlm.github.io.
RLDG: Robotic Generalist Policy Distillation via Reinforcement Learning
Xu, Charles, Li, Qiyang, Luo, Jianlan, Levine, Sergey
Recent advances in robotic foundation models have enabled the development of generalist policies that can adapt to diverse tasks. While these models show impressive flexibility, their performance heavily depends on the quality of their training data. In this work, we propose Reinforcement Learning Distilled Generalists (RLDG), a method that leverages reinforcement learning to generate high-quality training data for finetuning generalist policies. Through extensive real-world experiments on precise manipulation tasks like connector insertion and assembly, we demonstrate that generalist policies trained with RL-generated data consistently outperform those trained with human demonstrations, achieving up to 40% higher success rates while generalizing better to new tasks. We also provide a detailed analysis that reveals this performance gain stems from both optimized action distributions and improved state coverage. Our results suggest that combining task-specific RL with generalist policy distillation offers a promising approach for developing more capable and efficient robotic manipulation systems that maintain the flexibility of foundation models while achieving the performance of specialized controllers. Videos and code can be found on our project website https://generalist-distillation.github.io
Precise and Dexterous Robotic Manipulation via Human-in-the-Loop Reinforcement Learning
Luo, Jianlan, Xu, Charles, Wu, Jeffrey, Levine, Sergey
Reinforcement learning (RL) holds great promise for enabling autonomous acquisition of complex robotic manipulation skills, but realizing this potential in real-world settings has been challenging. We present a human-in-the-loop vision-based RL system that demonstrates impressive performance on a diverse set of dexterous manipulation tasks, including dynamic manipulation, precision assembly, and dual-arm coordination. Our approach integrates demonstrations and human corrections, efficient RL algorithms, and other system-level design choices to learn policies that achieve near-perfect success rates and fast cycle times within just 1 to 2.5 hours of training. We show that our method significantly outperforms imitation learning baselines and prior RL approaches, with an average 2x improvement in success rate and 1.8x faster execution. Through extensive experiments and analysis, we provide insights into the effectiveness of our approach, demonstrating how it learns robust, adaptive policies for both reactive and predictive control strategies. Our results suggest that RL can indeed learn a wide range of complex vision-based manipulation policies directly in the real world within practical training times. We hope this work will inspire a new generation of learned robotic manipulation techniques, benefiting both industrial applications and research advancements. Videos and code are available at our project website https://hil-serl.github.io/.
Octo: An Open-Source Generalist Robot Policy
Octo Model Team, null, Ghosh, Dibya, Walke, Homer, Pertsch, Karl, Black, Kevin, Mees, Oier, Dasari, Sudeep, Hejna, Joey, Kreiman, Tobias, Xu, Charles, Luo, Jianlan, Tan, You Liang, Chen, Lawrence Yunliang, Sanketi, Pannag, Vuong, Quan, Xiao, Ted, Sadigh, Dorsa, Finn, Chelsea, Levine, Sergey
Large policies pretrained on diverse robot datasets have the potential to transform robotic learning: instead of training new policies from scratch, such generalist robot policies may be finetuned with only a little in-domain data, yet generalize broadly. However, to be widely applicable across a range of robotic learning scenarios, environments, and tasks, such policies need to handle diverse sensors and action spaces, accommodate a variety of commonly used robotic platforms, and finetune readily and efficiently to new domains. In this work, we aim to lay the groundwork for developing open-source, widely applicable, generalist policies for robotic manipulation. As a first step, we introduce Octo, a large transformer-based policy trained on 800k trajectories from the Open X-Embodiment dataset, the largest robot manipulation dataset to date. It can be instructed via language commands or goal images and can be effectively finetuned to robot setups with new sensory inputs and action spaces within a few hours on standard consumer GPUs. In experiments across 9 robotic platforms, we demonstrate that Octo serves as a versatile policy initialization that can be effectively finetuned to new observation and action spaces. We also perform detailed ablations of design decisions for the Octo model, from architecture to training data, to guide future research on building generalist robot models.
Yell At Your Robot: Improving On-the-Fly from Language Corrections
Shi, Lucy Xiaoyang, Hu, Zheyuan, Zhao, Tony Z., Sharma, Archit, Pertsch, Karl, Luo, Jianlan, Levine, Sergey, Finn, Chelsea
Hierarchical policies that combine language and low-level control have been shown to perform impressively long-horizon robotic tasks, by leveraging either zero-shot high-level planners like pretrained language and vision-language models (LLMs/VLMs) or models trained on annotated robotic demonstrations. However, for complex and dexterous skills, attaining high success rates on long-horizon tasks still represents a major challenge -- the longer the task is, the more likely it is that some stage will fail. Can humans help the robot to continuously improve its long-horizon task performance through intuitive and natural feedback? In this paper, we make the following observation: high-level policies that index into sufficiently rich and expressive low-level language-conditioned skills can be readily supervised with human feedback in the form of language corrections. We show that even fine-grained corrections, such as small movements ("move a bit to the left"), can be effectively incorporated into high-level policies, and that such corrections can be readily obtained from humans observing the robot and making occasional suggestions. This framework enables robots not only to rapidly adapt to real-time language feedback, but also incorporate this feedback into an iterative training scheme that improves the high-level policy's ability to correct errors in both low-level execution and high-level decision-making purely from verbal feedback. Our evaluation on real hardware shows that this leads to significant performance improvement in long-horizon, dexterous manipulation tasks without the need for any additional teleoperation. Videos and code are available at https://yay-robot.github.io/.
SERL: A Software Suite for Sample-Efficient Robotic Reinforcement Learning
Luo, Jianlan, Hu, Zheyuan, Xu, Charles, Tan, You Liang, Berg, Jacob, Sharma, Archit, Schaal, Stefan, Finn, Chelsea, Gupta, Abhishek, Levine, Sergey
In recent years, significant progress has been made in the field of robotic reinforcement learning (RL), enabling methods that handle complex image observations, train in the real world, and incorporate auxiliary data, such as demonstrations and prior experience. However, despite these advances, robotic RL remains hard to use. It is acknowledged among practitioners that the particular implementation details of these algorithms are often just as important (if not more so) for performance as the choice of algorithm. We posit that a significant challenge to widespread adoption of robotic RL, as well as further development of robotic RL methods, is the comparative inaccessibility of such methods. To address this challenge, we developed a carefully implemented library containing a sample efficient off-policy deep RL method, together with methods for computing rewards and resetting the environment, a high-quality controller for a widely-adopted robot, and a number of challenging example tasks. We provide this library as a resource for the community, describe its design choices, and present experimental results. Perhaps surprisingly, we find that our implementation can achieve very efficient learning, acquiring policies for PCB board assembly, cable routing, and object relocation between 25 to 50 minutes of training per policy on average, improving over state-of-the-art results reported for similar tasks in the literature. These policies achieve perfect or near-perfect success rates, extreme robustness even under perturbations, and exhibit emergent recovery and correction behaviors. We hope that these promising results and our high-quality open-source implementation will provide a tool for the robotics community to facilitate further developments in robotic RL. Our code, documentation, and videos can be found at https://serl-robot.github.io/
FMB: a Functional Manipulation Benchmark for Generalizable Robotic Learning
Luo, Jianlan, Xu, Charles, Liu, Fangchen, Tan, Liam, Lin, Zipeng, Wu, Jeffrey, Abbeel, Pieter, Levine, Sergey
In this paper, we propose a real-world benchmark for studying robotic learning in the context of functional manipulation: a robot needs to accomplish complex long-horizon behaviors by composing individual manipulation skills in functionally relevant ways. The core design principles of our Functional Manipulation Benchmark (FMB) emphasize a harmonious balance between complexity and accessibility. Tasks are deliberately scoped to be narrow, ensuring that models and datasets of manageable scale can be utilized effectively to track progress. Simultaneously, they are diverse enough to pose a significant generalization challenge. Furthermore, the benchmark is designed to be easily replicable, encompassing all essential hardware and software components. To achieve this goal, FMB consists of a variety of 3D-printed objects designed for easy and accurate replication by other researchers. The objects are procedurally generated, providing a principled framework to study generalization in a controlled fashion. We focus on fundamental manipulation skills, including grasping, repositioning, and a range of assembly behaviors. The FMB can be used to evaluate methods for acquiring individual skills, as well as methods for combining and ordering such skills to solve complex, multi-stage manipulation tasks. We also offer an imitation learning framework that includes a suite of policies trained to solve the proposed tasks. This enables researchers to utilize our tasks as a versatile toolkit for examining various parts of the pipeline. For example, researchers could propose a better design for a grasping controller and evaluate it in combination with our baseline reorientation and assembly policies as part of a pipeline for solving multi-stage tasks. Our dataset, object CAD files, code, and evaluation videos can be found on our project website: https://functional-manipulation-benchmark.github.io
Multi-Stage Cable Routing through Hierarchical Imitation Learning
Luo, Jianlan, Xu, Charles, Geng, Xinyang, Feng, Gilbert, Fang, Kuan, Tan, Liam, Schaal, Stefan, Levine, Sergey
We study the problem of learning to perform multi-stage robotic manipulation tasks, with applications to cable routing, where the robot must route a cable through a series of clips. This setting presents challenges representative of complex multi-stage robotic manipulation scenarios: handling deformable objects, closing the loop on visual perception, and handling extended behaviors consisting of multiple steps that must be executed successfully to complete the entire task. In such settings, learning individual primitives for each stage that succeed with a high enough rate to perform a complete temporally extended task is impractical: if each stage must be completed successfully and has a non-negligible probability of failure, the likelihood of successful completion of the entire task becomes negligible. Therefore, successful controllers for such multi-stage tasks must be able to recover from failure and compensate for imperfections in low-level controllers by smartly choosing which controllers to trigger at any given time, retrying, or taking corrective action as needed. To this end, we describe an imitation learning system that uses vision-based policies trained from demonstrations at both the lower (motor control) and the upper (sequencing) level, present a system for instantiating this method to learn the cable routing task, and perform evaluations showing great performance in generalizing to very challenging clip placement variations. Supplementary videos, datasets, and code can be found at https://sites.google.com/view/cablerouting.
Open X-Embodiment: Robotic Learning Datasets and RT-X Models
Collaboration, Open X-Embodiment, Padalkar, Abhishek, Pooley, Acorn, Mandlekar, Ajay, Jain, Ajinkya, Tung, Albert, Bewley, Alex, Herzog, Alex, Irpan, Alex, Khazatsky, Alexander, Rai, Anant, Singh, Anikait, Garg, Animesh, Brohan, Anthony, Raffin, Antonin, Wahid, Ayzaan, Burgess-Limerick, Ben, Kim, Beomjoon, Schölkopf, Bernhard, Ichter, Brian, Lu, Cewu, Xu, Charles, Finn, Chelsea, Xu, Chenfeng, Chi, Cheng, Huang, Chenguang, Chan, Christine, Pan, Chuer, Fu, Chuyuan, Devin, Coline, Driess, Danny, Pathak, Deepak, Shah, Dhruv, Büchler, Dieter, Kalashnikov, Dmitry, Sadigh, Dorsa, Johns, Edward, Ceola, Federico, Xia, Fei, Stulp, Freek, Zhou, Gaoyue, Sukhatme, Gaurav S., Salhotra, Gautam, Yan, Ge, Schiavi, Giulio, Kahn, Gregory, Su, Hao, Fang, Hao-Shu, Shi, Haochen, Amor, Heni Ben, Christensen, Henrik I, Furuta, Hiroki, Walke, Homer, Fang, Hongjie, Mordatch, Igor, Radosavovic, Ilija, Leal, Isabel, Liang, Jacky, Abou-Chakra, Jad, Kim, Jaehyung, Peters, Jan, Schneider, Jan, Hsu, Jasmine, Bohg, Jeannette, Bingham, Jeffrey, Wu, Jiajun, Wu, Jialin, Luo, Jianlan, Gu, Jiayuan, Tan, Jie, Oh, Jihoon, Malik, Jitendra, Booher, Jonathan, Tompson, Jonathan, Yang, Jonathan, Lim, Joseph J., Silvério, João, Han, Junhyek, Rao, Kanishka, Pertsch, Karl, Hausman, Karol, Go, Keegan, Gopalakrishnan, Keerthana, Goldberg, Ken, Byrne, Kendra, Oslund, Kenneth, Kawaharazuka, Kento, Zhang, Kevin, Rana, Krishan, Srinivasan, Krishnan, Chen, Lawrence Yunliang, Pinto, Lerrel, Fei-Fei, Li, Tan, Liam, Ott, Lionel, Lee, Lisa, Tomizuka, Masayoshi, Spero, Max, Du, Maximilian, Ahn, Michael, Zhang, Mingtong, Ding, Mingyu, Srirama, Mohan Kumar, Sharma, Mohit, Kim, Moo Jin, Kanazawa, Naoaki, Hansen, Nicklas, Heess, Nicolas, Joshi, Nikhil J, Suenderhauf, Niko, Di Palo, Norman, Shafiullah, Nur Muhammad Mahi, Mees, Oier, Kroemer, Oliver, Sanketi, Pannag R, Wohlhart, Paul, Xu, Peng, Sermanet, Pierre, Sundaresan, Priya, Vuong, Quan, Rafailov, Rafael, Tian, Ran, Doshi, Ria, Martín-Martín, Roberto, Mendonca, Russell, Shah, Rutav, Hoque, Ryan, Julian, Ryan, Bustamante, Samuel, Kirmani, Sean, Levine, Sergey, Moore, Sherry, Bahl, Shikhar, Dass, Shivin, Sonawani, Shubham, Song, Shuran, Xu, Sichun, Haldar, Siddhant, Adebola, Simeon, Guist, Simon, Nasiriany, Soroush, Schaal, Stefan, Welker, Stefan, Tian, Stephen, Dasari, Sudeep, Belkhale, Suneel, Osa, Takayuki, Harada, Tatsuya, Matsushima, Tatsuya, Xiao, Ted, Yu, Tianhe, Ding, Tianli, Davchev, Todor, Zhao, Tony Z., Armstrong, Travis, Darrell, Trevor, Jain, Vidhi, Vanhoucke, Vincent, Zhan, Wei, Zhou, Wenxuan, Burgard, Wolfram, Chen, Xi, Wang, Xiaolong, Zhu, Xinghao, Li, Xuanlin, Lu, Yao, Chebotar, Yevgen, Zhou, Yifan, Zhu, Yifeng, Xu, Ying, Wang, Yixuan, Bisk, Yonatan, Cho, Yoonyoung, Lee, Youngwoon, Cui, Yuchen, Wu, Yueh-Hua, Tang, Yujin, Zhu, Yuke, Li, Yunzhu, Iwasawa, Yusuke, Matsuo, Yutaka, Xu, Zhuo, Cui, Zichen Jeff
Large, high-capacity models trained on diverse datasets have shown remarkable successes on efficiently tackling downstream applications. In domains from NLP to Computer Vision, this has led to a consolidation of pretrained models, with general pretrained backbones serving as a starting point for many applications. Can such a consolidation happen in robotics? Conventionally, robotic learning methods train a separate model for every application, every robot, and even every environment. Can we instead train generalist X-robot policy that can be adapted efficiently to new robots, tasks, and environments? In this paper, we provide datasets in standardized data formats and models to make it possible to explore this possibility in the context of robotic manipulation, alongside experimental results that provide an example of effective X-robot policies. We assemble a dataset from 22 different robots collected through a collaboration between 21 institutions, demonstrating 527 skills (160266 tasks). We show that a high-capacity model trained on this data, which we call RT-X, exhibits positive transfer and improves the capabilities of multiple robots by leveraging experience from other platforms. More details can be found on the project website $\href{https://robotics-transformer-x.github.io}{\text{robotics-transformer-x.github.io}}$.