Luo, Chen
Examples as the Prompt: A Scalable Approach for Efficient LLM Adaptation in E-Commerce
Zeng, Jingying, Dai, Zhenwei, Liu, Hui, Varshney, Samarth, Liu, Zhiji, Luo, Chen, Li, Zhen, He, Qi, Tang, Xianfeng
Prompting LLMs offers an efficient way to guide output generation without explicit model training. In the e-commerce domain, prompting-based applications are widely used for tasks such as query understanding, recommender systems, and customer support. However, adapting LLMs to different tasks often requires extensive prompt engineering by domain experts, along with frequent updates to align with evolving business needs. Additionally, crafting fully unbiased natural language prompts remains a challenge for humans. To address these challenges, we propose a novel framework, Examples as the Prompt (EaP) which leverages labeled data to enhance prompts. Specifically, EaP automatically selects the most representative examples to maximize the few-shot capability of LLMs. It is efficient due to its unsupervised example selection and adaptive to potential data distribution shifts. We validate EaP on four real-world production use cases, demonstrating that it achieves comparable or even superior performance comparing to hand-crafted prompts designed by domain experts. Additionally, we introduce EaP_lite, which entirely replaces the natural language components of prompts with labeled examples. EaP_lite improves LLM inference speed by up to 70% without compromising performance. Latest online A/B test shows that using EaP and EaP_lite for data labeling can bring significant composite revenue gain by 0.06%.
Cite Before You Speak: Enhancing Context-Response Grounding in E-commerce Conversational LLM-Agents
Zeng, Jingying, Liu, Hui, Dai, Zhenwei, Tang, Xianfeng, Luo, Chen, Varshney, Samarth, Li, Zhen, He, Qi
With the advancement of conversational large language models (LLMs), several LLM-based Conversational Shopping Agents (CSA) have been developed to help customers answer questions and smooth their shopping journey in e-commerce domain. The primary objective in building a trustworthy CSA is to ensure the agent's responses are accurate and factually grounded, which is essential for building customer trust and encouraging continuous engagement. However, two challenges remain. First, LLMs produce hallucinated or unsupported claims. Such inaccuracies risk spreading misinformation and diminishing customer trust. Second, without providing knowledge source attribution in CSA response, customers struggle to verify LLM-generated information. To address these challenges, we present an easily productionized solution that enables a "citation experience" utilizing In-context Learning (ICL) and Multi-UX-Inference (MUI) to generate responses with citations to attribute its original sources without interfering other existing UX features. With proper UX design, these citation marks can be linked to the related product information and display the source to our customers. In this work, we also build auto-metrics and scalable benchmarks to holistically evaluate LLM's grounding and attribution capabilities. Our experiments demonstrate that incorporating this citation generation paradigm can substantially enhance the grounding of LLM responses by 13.83% on the real-world data. As such, our solution not only addresses the immediate challenges of LLM grounding issues but also adds transparency to conversational AI.
How Far are LLMs from Real Search? A Comprehensive Study on Efficiency, Completeness, and Inherent Capabilities
Lin, Minhua, Liu, Hui, Tang, Xianfeng, Zeng, Jingying, Dai, Zhenwei, Luo, Chen, Li, Zheng, Zhang, Xiang, He, Qi, Wang, Suhang
Search plays a fundamental role in problem-solving across various domains, with most real-world decision-making problems being solvable through systematic search. Drawing inspiration from recent discussions on search and learning, we systematically explore the complementary relationship between search and Large Language Models (LLMs) from three perspectives. First, we analyze how learning can enhance search efficiency and propose Search via Learning (SeaL), a framework that leverages LLMs for effective and efficient search. Second, we further extend SeaL to SeaL-C to ensure rigorous completeness during search. Our evaluation across three real-world planning tasks demonstrates that SeaL achieves near-perfect accuracy while reducing search spaces by up to 99.1% compared to traditional approaches. Finally, we explore how far LLMs are from real search by investigating whether they can develop search capabilities independently. Our analysis reveals that while current LLMs struggle with efficient search in complex problems, incorporating systematic search strategies significantly enhances their problem-solving capabilities. These findings not only validate the effectiveness of our approach but also highlight the need for improving LLMs' search abilities for real-world applications.
Stepwise Perplexity-Guided Refinement for Efficient Chain-of-Thought Reasoning in Large Language Models
Cui, Yingqian, He, Pengfei, Zeng, Jingying, Liu, Hui, Tang, Xianfeng, Dai, Zhenwei, Han, Yan, Luo, Chen, Huang, Jing, Li, Zhen, Wang, Suhang, Xing, Yue, Tang, Jiliang, He, Qi
Chain-of-Thought (CoT) reasoning, which breaks down complex tasks into intermediate reasoning steps, has significantly enhanced the performance of large language models (LLMs) on challenging tasks. However, the detailed reasoning process in CoT often incurs long generation times and high computational costs, partly due to the inclusion of unnecessary steps. To address this, we propose a method to identify critical reasoning steps using perplexity as a measure of their importance: a step is deemed critical if its removal causes a significant increase in perplexity. Our method enables models to focus solely on generating these critical steps. This can be achieved through two approaches: refining demonstration examples in few-shot CoT or fine-tuning the model using selected examples that include only critical steps. Comprehensive experiments validate the effectiveness of our method, which achieves a better balance between the reasoning accuracy and efficiency of CoT.
Reasoning with Graphs: Structuring Implicit Knowledge to Enhance LLMs Reasoning
Han, Haoyu, Xie, Yaochen, Liu, Hui, Tang, Xianfeng, Nag, Sreyashi, Headden, William, Liu, Hui, Li, Yang, Luo, Chen, Ji, Shuiwang, He, Qi, Tang, Jiliang
Large language models (LLMs) have demonstrated remarkable success across a wide range of tasks; however, they still encounter challenges in reasoning tasks that require understanding and inferring relationships between distinct pieces of information within text sequences. This challenge is particularly pronounced in tasks involving multi-step processes, such as logical reasoning and multi-hop question answering, where understanding implicit relationships between entities and leveraging multi-hop connections in the given context are crucial. Graphs, as fundamental data structures, explicitly represent pairwise relationships between entities, thereby offering the potential to enhance LLMs' reasoning capabilities. External graphs have proven effective in supporting LLMs across multiple tasks. However, in many reasoning tasks, no pre-existing graph structure is provided. Can we structure implicit knowledge derived from context into graphs to assist LLMs in reasoning? In this paper, we propose Reasoning with Graphs (RwG) by first constructing explicit graphs from the context and then leveraging these graphs to enhance LLM reasoning performance on reasoning tasks. Extensive experiments demonstrate the effectiveness of the proposed method in improving both logical reasoning and multi-hop question answering tasks.
A Survey of Calibration Process for Black-Box LLMs
Xie, Liangru, Liu, Hui, Zeng, Jingying, Tang, Xianfeng, Han, Yan, Luo, Chen, Huang, Jing, Li, Zhen, Wang, Suhang, He, Qi
Large Language Models (LLMs) demonstrate remarkable performance in semantic understanding and generation, yet accurately assessing their output reliability remains a significant challenge. While numerous studies have explored calibration techniques, they primarily focus on White-Box LLMs with accessible parameters. Black-Box LLMs, despite their superior performance, pose heightened requirements for calibration techniques due to their API-only interaction constraints. Although recent researches have achieved breakthroughs in black-box LLMs calibration, a systematic survey of these methodologies is still lacking. To bridge this gap, we presents the first comprehensive survey on calibration techniques for black-box LLMs. We first define the Calibration Process of LLMs as comprising two interrelated key steps: Confidence Estimation and Calibration. Second, we conduct a systematic review of applicable methods within black-box settings, and provide insights on the unique challenges and connections in implementing these key steps. Furthermore, we explore typical applications of Calibration Process in black-box LLMs and outline promising future research directions, providing new perspectives for enhancing reliability and human-machine alignment. This is our GitHub link: https://github.com/LiangruXie/Calibration-Process-in-Black-Box-LLMs
Intention Knowledge Graph Construction for User Intention Relation Modeling
Bai, Jiaxin, Wang, Zhaobo, Cheng, Junfei, Yu, Dan, Huang, Zerui, Wang, Weiqi, Liu, Xin, Luo, Chen, He, Qi, Zhu, Yanming, Li, Bo, Song, Yangqiu
Understanding user intentions is challenging for online platforms. Recent work on intention knowledge graphs addresses this but often lacks focus on connecting intentions, which is crucial for modeling user behavior and predicting future actions. This paper introduces a framework to automatically generate an intention knowledge graph, capturing connections between user intentions. Using the Amazon m2 dataset, we construct an intention graph with 351 million edges, demonstrating high plausibility and acceptance. Our model effectively predicts new session intentions and enhances product recommendations, outperforming previous state-of-the-art methods and showcasing the approach's practical utility.
SimRAG: Self-Improving Retrieval-Augmented Generation for Adapting Large Language Models to Specialized Domains
Xu, Ran, Liu, Hui, Nag, Sreyashi, Dai, Zhenwei, Xie, Yaochen, Tang, Xianfeng, Luo, Chen, Li, Yang, Ho, Joyce C., Yang, Carl, He, Qi
Retrieval-augmented generation (RAG) enhances the question-answering (QA) abilities of large language models (LLMs) by integrating external knowledge. However, adapting general-purpose RAG systems to specialized fields such as science and medicine poses unique challenges due to distribution shifts and limited access to domain-specific data. To tackle this, we propose SimRAG, a self-training approach that equips the LLM with joint capabilities of question answering and question generation for domain adaptation. Our method first fine-tunes the LLM on instruction-following, question-answering, and search-related data. Then, it prompts the same LLM to generate diverse domain-relevant questions from unlabeled corpora, with an additional filtering strategy to retain high-quality synthetic examples. By leveraging these synthetic examples, the LLM can improve their performance on domain-specific RAG tasks. Experiments on 11 datasets, spanning two backbone sizes and three domains, demonstrate that SimRAG outperforms baselines by 1.2\%--8.6\%.
A Theoretical Understanding of Chain-of-Thought: Coherent Reasoning and Error-Aware Demonstration
Cui, Yingqian, He, Pengfei, Tang, Xianfeng, He, Qi, Luo, Chen, Tang, Jiliang, Xing, Yue
Few-shot Chain-of-Thought (CoT) prompting has demonstrated strong performance in improving the reasoning capabilities of large language models (LLMs). While theoretical investigations have been conducted to understand CoT, the underlying transformer used in these studies isolates the CoT reasoning process into separated in-context learning steps (Stepwise ICL). In this work, we theoretically show that, compared to Stepwise ICL, the transformer gains better error correction ability and more accurate predictions if the reasoning from earlier steps (Coherent CoT) is integrated. Given that this coherent reasoning changes the behavior of the transformer, we further investigate the sensitivity of the transformer with Coherent CoT when the demonstration examples are corrupted at the inference stage. Our theoretical results indicate that the transformer is more sensitive to errors in intermediate reasoning steps than the final outcome. Building upon this observation, we propose an improvement on CoT by incorporating both correct and incorrect reasoning paths in the demonstration. Our experiments validate the effectiveness of the proposed approach.
BlendFilter: Advancing Retrieval-Augmented Large Language Models via Query Generation Blending and Knowledge Filtering
Wang, Haoyu, Li, Ruirui, Jiang, Haoming, Tian, Jinjin, Wang, Zhengyang, Luo, Chen, Tang, Xianfeng, Cheng, Monica, Zhao, Tuo, Gao, Jing
Retrieval-augmented Large Language Models (LLMs) offer substantial benefits in enhancing performance across knowledge-intensive scenarios. However, these methods often face challenges with complex inputs and encounter difficulties due to noisy knowledge retrieval, notably hindering model effectiveness. To address this issue, we introduce BlendFilter, a novel approach that elevates retrieval-augmented LLMs by integrating query generation blending with knowledge filtering. BlendFilter proposes the blending process through its query generation method, which integrates both external and internal knowledge augmentation with the original query, ensuring comprehensive information gathering. Additionally, our distinctive knowledge filtering module capitalizes on the intrinsic capabilities of the LLM, effectively eliminating extraneous data. We conduct extensive experiments on three open-domain question answering benchmarks, and the findings clearly indicate that our innovative BlendFilter surpasses state-of-the-art baselines significantly.