Lucy, Li
DrawEduMath: Evaluating Vision Language Models with Expert-Annotated Students' Hand-Drawn Math Images
Baral, Sami, Lucy, Li, Knight, Ryan, Ng, Alice, Soldaini, Luca, Heffernan, Neil T., Lo, Kyle
In real-world settings, vision language models (VLMs) should robustly handle naturalistic, noisy visual content as well as domain-specific language and concepts. For example, K-12 educators using digital learning platforms may need to examine and provide feedback across many images of students' math work. To assess the potential of VLMs to support educators in settings like this one, we introduce DrawEduMath, an English-language dataset of 2,030 images of students' handwritten responses to K-12 math problems. Teachers provided detailed annotations, including free-form descriptions of each image and 11,661 question-answer (QA) pairs. These annotations capture a wealth of pedagogical insights, ranging from students' problem-solving strategies to the composition of their drawings, diagrams, and writing. We evaluate VLMs on teachers' QA pairs, as well as 44,362 synthetic QA pairs derived from teachers' descriptions using language models (LMs). We show that even state-of-the-art VLMs leave much room for improvement on DrawEduMath questions. We also find that synthetic QAs, though imperfect, can yield similar model rankings as teacher-written QAs. We release DrawEduMath to support the evaluation of VLMs' abilities to reason mathematically over images gathered with educational contexts in mind.
On Classification with Large Language Models in Cultural Analytics
Bamman, David, Chang, Kent K., Lucy, Li, Zhou, Naitian
In this work, we survey the way in which classification is used as a sensemaking practice in cultural analytics, and assess where large language models can fit into this landscape. We identify ten tasks supported by publicly available datasets on which we empirically assess the performance of LLMs compared to traditional supervised methods, and explore the ways in which LLMs can be employed for sensemaking goals beyond mere accuracy. We find that prompt-based LLMs are competitive with traditional supervised models for established tasks, but perform less well on de novo tasks. In addition, LLMs can assist sensemaking by acting as an intermediary input to formal theory testing.
Dolma: an Open Corpus of Three Trillion Tokens for Language Model Pretraining Research
Soldaini, Luca, Kinney, Rodney, Bhagia, Akshita, Schwenk, Dustin, Atkinson, David, Authur, Russell, Bogin, Ben, Chandu, Khyathi, Dumas, Jennifer, Elazar, Yanai, Hofmann, Valentin, Jha, Ananya Harsh, Kumar, Sachin, Lucy, Li, Lyu, Xinxi, Lambert, Nathan, Magnusson, Ian, Morrison, Jacob, Muennighoff, Niklas, Naik, Aakanksha, Nam, Crystal, Peters, Matthew E., Ravichander, Abhilasha, Richardson, Kyle, Shen, Zejiang, Strubell, Emma, Subramani, Nishant, Tafjord, Oyvind, Walsh, Pete, Zettlemoyer, Luke, Smith, Noah A., Hajishirzi, Hannaneh, Beltagy, Iz, Groeneveld, Dirk, Dodge, Jesse, Lo, Kyle
Language models have become a critical technology to tackling a wide range of natural language processing tasks, yet many details about how the best-performing language models were developed are not reported. In particular, information about their pretraining corpora is seldom discussed: commercial language models rarely provide any information about their data; even open models rarely release datasets they are trained on, or an exact recipe to reproduce them. As a result, it is challenging to conduct certain threads of language modeling research, such as understanding how training data impacts model capabilities and shapes their limitations. To facilitate open research on language model pretraining, we release Dolma, a three trillion tokens English corpus, built from a diverse mixture of web content, scientific papers, code, public-domain books, social media, and encyclopedic materials. In addition, we open source our data curation toolkit to enable further experimentation and reproduction of our work. In this report, we document Dolma, including its design principles, details about its construction, and a summary of its contents. We interleave this report with analyses and experimental results from training language models on intermediate states of Dolma to share what we have learned about important data curation practices, including the role of content or quality filters, deduplication, and multi-source mixing. Dolma has been used to train OLMo, a state-of-the-art, open language model and framework designed to build and study the science of language modeling.
AboutMe: Using Self-Descriptions in Webpages to Document the Effects of English Pretraining Data Filters
Lucy, Li, Gururangan, Suchin, Soldaini, Luca, Strubell, Emma, Bamman, David, Klein, Lauren, Dodge, Jesse
Large language models' (LLMs) abilities are drawn from their pretraining data, and model development begins with data curation. However, decisions around what data is retained or removed during this initial stage is under-scrutinized. In our work, we ground web text, which is a popular pretraining data source, to its social and geographic contexts. We create a new dataset of 10.3 million self-descriptions of website creators, and extract information about who they are and where they are from: their topical interests, social roles, and geographic affiliations. Then, we conduct the first study investigating how ten "quality" and English language identification (langID) filters affect webpages that vary along these social dimensions. Our experiments illuminate a range of implicit preferences in data curation: we show that some quality classifiers act like topical domain filters, and langID can overlook English content from some regions of the world. Overall, we hope that our work will encourage a new line of research on pretraining data curation practices and its social implications.
"One-size-fits-all"? Observations and Expectations of NLG Systems Across Identity-Related Language Features
Lucy, Li, Blodgett, Su Lin, Shokouhi, Milad, Wallach, Hanna, Olteanu, Alexandra
Fairness-related assumptions about what constitutes appropriate NLG system behaviors range from invariance, where systems are expected to respond identically to social groups, to adaptation, where responses should instead vary across them. We design and conduct five case studies, in which we perturb different types of identity-related language features (names, roles, locations, dialect, and style) in NLG system inputs to illuminate tensions around invariance and adaptation. We outline people's expectations of system behaviors, and surface potential caveats of these two contrasting yet commonly-held assumptions. We find that motivations for adaptation include social norms, cultural differences, feature-specific information, and accommodation; motivations for invariance include perspectives that favor prescriptivism, view adaptation as unnecessary or too difficult for NLG systems to do appropriately, and are wary of false assumptions. Our findings highlight open challenges around defining what constitutes fair NLG system behavior.
Words as Gatekeepers: Measuring Discipline-specific Terms and Meanings in Scholarly Publications
Lucy, Li, Dodge, Jesse, Bamman, David, Keith, Katherine A.
Scholarly text is often laden with jargon, or specialized language that can facilitate efficient in-group communication within fields but hinder understanding for out-groups. In this work, we develop and validate an interpretable approach for measuring scholarly jargon from text. Expanding the scope of prior work which focuses on word types, we use word sense induction to also identify words that are widespread but overloaded with different meanings across fields. We then estimate the prevalence of these discipline-specific words and senses across hundreds of subfields, and show that word senses provide a complementary, yet unique view of jargon alongside word types. We demonstrate the utility of our metrics for science of science and computational sociolinguistics by highlighting two key social implications. First, though most fields reduce their use of jargon when writing for general-purpose venues, and some fields (e.g., biological sciences) do so less than others. Second, the direction of correlation between jargon and citation rates varies among fields, but jargon is nearly always negatively correlated with interdisciplinary impact. Broadly, our findings suggest that though multidisciplinary venues intend to cater to more general audiences, some fields' writing norms may act as barriers rather than bridges, and thus impede the dispersion of scholarly ideas.