Lu, Yu
UBER: Uncertainty-Based Evolution with Large Language Models for Automatic Heuristic Design
Chen, Zijie, Zhou, Zhanchao, Lu, Yu, Xu, Renjun, Pan, Lili, Lan, Zhenzhong
NP-hard problem-solving traditionally relies on heuristics, but manually crafting effective heuristics for complex problems remains challenging. While recent work like FunSearch has demonstrated that large language models (LLMs) can be leveraged for heuristic design in evolutionary algorithm (EA) frameworks, their potential is not fully realized due to its deficiency in exploitation and exploration. We present UBER (Uncertainty-Based Evolution for Refinement), a method that enhances LLM+EA methods for automatic heuristic design by integrating uncertainty on top of the FunSearch framework. UBER introduces two key innovations: an Uncertainty-Inclusive Evolution Process (UIEP) for adaptive exploration-exploitation balance, and a principled Uncertainty-Inclusive Island Reset (UIIS) strategy for maintaining population diversity. Through extensive experiments on challenging NP-complete problems, UBER demonstrates significant improvements over FunSearch. Our work provides a new direction for the synergy of LLMs and EA, advancing the field of automatic heuristic design.
Push the Limit of Multi-modal Emotion Recognition by Prompting LLMs with Receptive-Field-Aware Attention Weighting
Zhang, Liyun, Ding, Dian, Lu, Yu, Chen, Yi-Chao, Xue, Guangtao
Understanding the emotions in a dialogue usually requires external knowledge to accurately understand the contents. As the LLMs become more and more powerful, we do not want to settle on the limited ability of the pre-trained language model. However, the LLMs either can only process text modality or are too expensive to process the multimedia information. We aim to utilize both the power of LLMs and the supplementary features from the multimedia modalities. In this paper, we present a framework, Lantern, that can improve the performance of a certain vanilla model by prompting large language models with receptive-field-aware attention weighting. This framework trained a multi-task vanilla model to produce probabilities of emotion classes and dimension scores. These predictions are fed into the LLMs as references to adjust the predicted probabilities of each emotion class with its external knowledge and contextual understanding. We slice the dialogue into different receptive fields, and each sample is included in exactly t receptive fields. Finally, the predictions of LLMs are merged with a receptive-field-aware attention-driven weighting module. In the experiments, vanilla models CORECT and SDT are deployed in Lantern with GPT-4 or Llama-3.1-405B. The experiments in IEMOCAP with 4-way and 6-way settings demonstrated that the Lantern can significantly improve the performance of current vanilla models by up to 1.23% and 1.80%.
MME-Finance: A Multimodal Finance Benchmark for Expert-level Understanding and Reasoning
Gan, Ziliang, Lu, Yu, Zhang, Dong, Li, Haohan, Liu, Che, Liu, Jian, Liu, Ji, Wu, Haipang, Fu, Chaoyou, Xu, Zenglin, Zhang, Rongjunchen, Dai, Yong
In recent years, multimodal benchmarks for general domains have guided the rapid development of multimodal models on general tasks. However, the financial field has its peculiarities. It features unique graphical images (e.g., candlestick charts, technical indicator charts) and possesses a wealth of specialized financial knowledge (e.g., futures, turnover rate). Therefore, benchmarks from general fields often fail to measure the performance of multimodal models in the financial domain, and thus cannot effectively guide the rapid development of large financial models. To promote the development of large financial multimodal models, we propose MME-Finance, an bilingual open-ended and practical usage-oriented Visual Question Answering (VQA) benchmark. The characteristics of our benchmark are finance and expertise, which include constructing charts that reflect the actual usage needs of users (e.g., computer screenshots and mobile photography), creating questions according to the preferences in financial domain inquiries, and annotating questions by experts with 10+ years of experience in the financial industry. Additionally, we have developed a custom-designed financial evaluation system in which visual information is first introduced in the multi-modal evaluation process. Extensive experimental evaluations of 19 mainstream MLLMs are conducted to test their perception, reasoning, and cognition capabilities. The results indicate that models performing well on general benchmarks cannot do well on MME-Finance; for instance, the top-performing open-source and closed-source models obtain 65.69 (Qwen2VL-72B) and 63.18 (GPT-4o), respectively. Their performance is particularly poor in categories most relevant to finance, such as candlestick charts and technical indicator charts. In addition, we propose a Chinese version, which helps compare performance of MLLMs under a Chinese context.
Nova: An Iterative Planning and Search Approach to Enhance Novelty and Diversity of LLM Generated Ideas
Hu, Xiang, Fu, Hongyu, Wang, Jinge, Wang, Yifeng, Li, Zhikun, Xu, Renjun, Lu, Yu, Jin, Yaochu, Pan, Lili, Lan, Zhenzhong
Scientific innovation is pivotal for humanity, and harnessing large language models (LLMs) to generate research ideas could transform discovery. However, existing LLMs often produce simplistic and repetitive suggestions due to their limited ability in acquiring external knowledge for innovation. To address this problem, we introduce an enhanced planning and search methodology designed to boost the creative potential of LLM-based systems. Our approach involves an iterative process to purposely plan the retrieval of external knowledge, progressively enriching the idea generation with broader and deeper insights. Validation through automated and human assessments indicates that our framework substantially elevates the quality of generated ideas, particularly in novelty and diversity. The number of unique novel ideas produced by our framework is 3.4 times higher than without it. Moreover, our method outperforms the current state-of-the-art, generating at least 2.5 times more top-rated ideas based on 170 seed papers in a Swiss Tournament evaluation.
Understanding the Therapeutic Relationship between Counselors and Clients in Online Text-based Counseling using LLMs
Li, Anqi, Lu, Yu, Song, Nirui, Zhang, Shuai, Ma, Lizhi, Lan, Zhenzhong
Robust therapeutic relationships between counselors and clients are fundamental to counseling effectiveness. The assessment of therapeutic alliance is well-established in traditional face-to-face therapy but may not directly translate to text-based settings. With millions of individuals seeking support through online text-based counseling, understanding the relationship in such contexts is crucial. In this paper, we present an automatic approach using large language models (LLMs) to understand the development of therapeutic alliance in text-based counseling. We adapt a theoretically grounded framework specifically to the context of online text-based counseling and develop comprehensive guidelines for characterizing the alliance. We collect a comprehensive counseling dataset and conduct multiple expert evaluations on a subset based on this framework. Our LLM-based approach, combined with guidelines and simultaneous extraction of supportive evidence underlying its predictions, demonstrates effectiveness in identifying the therapeutic alliance. Through further LLM-based evaluations on additional conversations, our findings underscore the challenges counselors face in cultivating strong online relationships with clients. Furthermore, we demonstrate the potential of LLM-based feedback mechanisms to enhance counselors' ability to build relationships, supported by a small-scale proof-of-concept.
G-DIG: Towards Gradient-based Diverse and High-quality Instruction Data Selection for Machine Translation
Pan, Xingyuan, Huang, Luyang, Kang, Liyan, Liu, Zhicheng, Lu, Yu, Cheng, Shanbo
Large Language Models (LLMs) have demonstrated remarkable abilities in general scenarios. Instruction finetuning empowers them to align with humans in various tasks. Nevertheless, the Diversity and Quality of the instruction data remain two main challenges for instruction finetuning. With regard to this, in this paper, we propose a novel gradient-based method to automatically select high-quality and diverse instruction finetuning data for machine translation. Our key innovation centers around analyzing how individual training examples influence the model during training. Specifically, we select training examples that exert beneficial influences on the model as high-quality ones by means of Influence Function plus a small high-quality seed dataset. Moreover, to enhance the diversity of the training data we maximize the variety of influences they have on the model by clustering on their gradients and resampling. Extensive experiments on WMT22 and FLORES translation tasks demonstrate the superiority of our methods, and in-depth analysis further validates their effectiveness and generalization.
Hyperbolic Knowledge Transfer in Cross-Domain Recommendation System
Yang, Xin, Chang, Heng, Lai, Zhijian, Yang, Jinze, Li, Xingrun, Lu, Yu, Wang, Shuaiqiang, Yin, Dawei, Min, Erxue
Cross-Domain Recommendation (CDR) seeks to utilize knowledge from different domains to alleviate the problem of data sparsity in the target recommendation domain, and it has been gaining more attention in recent years. Although there have been notable advancements in this area, most current methods represent users and items in Euclidean space, which is not ideal for handling long-tail distributed data in recommendation systems. Additionally, adding data from other domains can worsen the long-tail characteristics of the entire dataset, making it harder to train CDR models effectively. Recent studies have shown that hyperbolic methods are particularly suitable for modeling long-tail distributions, which has led us to explore hyperbolic representations for users and items in CDR scenarios. However, due to the distinct characteristics of the different domains, applying hyperbolic representation learning to CDR tasks is quite challenging. In this paper, we introduce a new framework called Hyperbolic Contrastive Learning (HCTS), designed to capture the unique features of each domain while enabling efficient knowledge transfer between domains. We achieve this by embedding users and items from each domain separately and mapping them onto distinct hyperbolic manifolds with adjustable curvatures for prediction. To improve the representations of users and items in the target domain, we develop a hyperbolic contrastive learning module for knowledge transfer. Extensive experiments on real-world datasets demonstrate that hyperbolic manifolds are a promising alternative to Euclidean space for CDR tasks.
Retaining Key Information under High Compression Ratios: Query-Guided Compressor for LLMs
Cao, Zhiwei, Cao, Qian, Lu, Yu, Peng, Ningxin, Huang, Luyang, Cheng, Shanbo, Su, Jinsong
The growing popularity of Large Language Models has sparked interest in context compression for Large Language Models (LLMs). However, the performance of previous methods degrades dramatically as compression ratios increase, sometimes even falling to the closed-book level. This decline can be attributed to the loss of key information during the compression process. Our preliminary study supports this hypothesis, emphasizing the significance of retaining key information to maintain model performance under high compression ratios. As a result, we introduce Query-Guided Compressor (QGC), which leverages queries to guide the context compression process, effectively preserving key information within the compressed context. Additionally, we employ a dynamic compression strategy. We validate the effectiveness of our proposed QGC on the Question Answering task, including NaturalQuestions, TriviaQA, and HotpotQA datasets. Experimental results show that QGC can consistently perform well even at high compression ratios, which also offers significant benefits in terms of inference cost and throughput.
Unveiling the Secrets of Engaging Conversations: Factors that Keep Users Hooked on Role-Playing Dialog Agents
Zhang, Shuai, Lu, Yu, Liu, Junwen, Yu, Jia, Qiu, Huachuan, Yan, Yuming, Lan, Zhenzhong
With the growing humanlike nature of dialog agents, people are now engaging in extended conversations that can stretch from brief moments to substantial periods of time. Understanding the factors that contribute to sustaining these interactions is crucial, yet existing studies primarily focusing on short-term simulations that rarely explore such prolonged and real conversations. In this paper, we investigate the factors influencing retention rates in real interactions with roleplaying models. By analyzing a large dataset of interactions between real users and thousands of characters, we systematically examine multiple factors and assess their impact on user retention rate. Surprisingly, we find that the degree to which the bot embodies the roles it plays has limited influence on retention rates, while the length of each turn it speaks significantly affects retention rates. This study sheds light on the critical aspects of user engagement with role-playing models and provides valuable insights for future improvements in the development of large language models for role-playing purposes.
FlowZero: Zero-Shot Text-to-Video Synthesis with LLM-Driven Dynamic Scene Syntax
Lu, Yu, Zhu, Linchao, Fan, Hehe, Yang, Yi
Text-to-video (T2V) generation is a rapidly growing research area that aims to translate the scenes, objects, and actions within complex video text into a sequence of coherent visual frames. We present FlowZero, a novel framework that combines Large Language Models (LLMs) with image diffusion models to generate temporally-coherent videos. FlowZero uses LLMs to understand complex spatio-temporal dynamics from text, where LLMs can generate a comprehensive dynamic scene syntax (DSS) containing scene descriptions, object layouts, and background motion patterns. These elements in DSS are then used to guide the image diffusion model for video generation with smooth object motions and frame-to-frame coherence. Moreover, FlowZero incorporates an iterative self-refinement process, enhancing the alignment between the spatio-temporal layouts and the textual prompts for the videos. To enhance global coherence, we propose enriching the initial noise of each frame with motion dynamics to control the background movement and camera motion adaptively. By using spatio-temporal syntaxes to guide the diffusion process, FlowZero achieves improvement in zero-shot video synthesis, generating coherent videos with vivid motion.