Loakman, Tyler
LongEval: A Comprehensive Analysis of Long-Text Generation Through a Plan-based Paradigm
Wu, Siwei, Li, Yizhi, Qu, Xingwei, Ravikumar, Rishi, Li, Yucheng, Loakman, Tyler, Quan, Shanghaoran, Wei, Xiaoyong, Batista-Navarro, Riza, Lin, Chenghua
Large Language Models (LLMs) have achieved remarkable success in various natural language processing tasks, yet their ability to generate long-form content remains poorly understood and evaluated. Our analysis reveals that current LLMs struggle with length requirements and information density in long-text generation, with performance deteriorating as text length increases. To quantitively locate such a performance degradation and provide further insights on model development, we present LongEval, a benchmark that evaluates long-text generation through both direct and plan-based generation paradigms, inspired by cognitive and linguistic writing models. The comprehensive experiments in this work reveal interesting findings such as that while model size correlates with generation ability, the small-scale model (e.g., LongWriter), well-trained on long texts, has comparable performance. All code and datasets are released in https://github.com/Wusiwei0410/LongEval.
With Ears to See and Eyes to Hear: Sound Symbolism Experiments with Multimodal Large Language Models
Loakman, Tyler, Li, Yucheng, Lin, Chenghua
Recently, Large Language Models (LLMs) and Vision Language Models (VLMs) have demonstrated aptitude as potential substitutes for human participants in experiments testing psycholinguistic phenomena. However, an understudied question is to what extent models that only have access to vision and text modalities are able to implicitly understand sound-based phenomena via abstract reasoning from orthography and imagery alone. To investigate this, we analyse the ability of VLMs and LLMs to demonstrate sound symbolism (i.e., to recognise a non-arbitrary link between sounds and concepts) as well as their ability to "hear" via the interplay of the language and vision modules of open and closed-source multimodal models. We perform multiple experiments, including replicating the classic Kiki-Bouba and Mil-Mal shape and magnitude symbolism tasks and comparing human judgements of linguistic iconicity with that of LLMs. Our results show that VLMs demonstrate varying levels of agreement with human labels, Figure 1: Illustration of the 3 main experiments we and more task information may be required perform. Firstly, Shape Symbolism is a binary choice for VLMs versus their human counterparts for between two pseudowords to best describe an object that is in silico experimentation. We additionally see spiky or rounded. Magnitude Symbolism involves a binary through higher maximum agreement levels that choice between two pseudowords to best describe an object Magnitude Symbolism is an easier pattern for that is small or large. Finally, Iconicity involves rating VLMs to identify than Shape Symbolism, and the perceived iconicity of words, or how much their written/phonetic that an understanding of linguistic iconicity is form is representative of what they describe.
MMTE: Corpus and Metrics for Evaluating Machine Translation Quality of Metaphorical Language
Wang, Shun, Zhang, Ge, Wu, Han, Loakman, Tyler, Huang, Wenhao, Lin, Chenghua
Machine Translation (MT) has developed rapidly since the release of Large Language Models and current MT evaluation is performed through comparison with reference human translations or by predicting quality scores from human-labeled data. However, these mainstream evaluation methods mainly focus on fluency and factual reliability, whilst paying little attention to figurative quality. In this paper, we investigate the figurative quality of MT and propose a set of human evaluation metrics focused on the translation of figurative language. We additionally present a multilingual parallel metaphor corpus generated by post-editing. Our evaluation protocol is designed to estimate four aspects of MT: Metaphorical Equivalence, Emotion, Authenticity, and Quality. In doing so, we observe that translations of figurative expressions display different traits from literal ones.
ReproHum #0087-01: Human Evaluation Reproduction Report for Generating Fact Checking Explanations
Loakman, Tyler, Lin, Chenghua
This paper presents a partial reproduction of Generating Fact Checking Explanations by Atanasova et al. (2020) as part of the ReproHum (Belz and Thomson, 2024) element of the ReproNLP shared task to reproduce the findings of NLP research regarding human evaluation. This shared task aims to investigate the extent to which NLP as a field is becoming more or less reproducible over time. Following the instructions provided by the task organisers and the original authors, we collect relative rankings of 3 fact-checking explanations (comprising a gold standard and the outputs of 2 models) for 40 inputs on the criteria of Coverage. The results of our reproduction and reanalysis of the original work's raw results lend support to the original findings, with similar patterns seen between the original work and our reproduction. Whilst we observe slight variation from the original results, our findings support the main conclusions drawn by the original authors pertaining to the efficacy of their proposed models.
Train & Constrain: Phonologically Informed Tongue-Twister Generation from Topics and Paraphrases
Loakman, Tyler, Tang, Chen, Lin, Chenghua
Previous work in phonologically and phonetically grounded language generation has mainly focused on domains such as puns and poetry. In this article, we present new work on the generation of tongue-twisters - a form of language that is required to be conditioned on a phoneme level to maximize sound overlap, whilst maintaining semantic consistency with an input topic and still being grammatically correct. We present TwisterLister, a pipeline for generating phonologically informed tongue-twisters from Large Language Models (LLMs) that we use to generate TwistList 2.0, the largest annotated dataset of tongue-twisters to date, consisting of 17K+ examples from a combination of human and LLM authors. Our generation pipeline involves the use of a phonologically constrained vocabulary alongside LLM prompting to generate novel, non-derivative tongue-twister examples. We additionally present the results of automatic and human evaluation of smaller models trained on our generated dataset to demonstrate the extent to which phonologically motivated language types can be generated without explicit injection of phonological knowledge. Additionally, we introduce a Phoneme-Aware Constrained Decoding module (PACD) that can be integrated into any causal language model and demonstrate that this method generates good quality tongue-twisters both with and without fine-tuning the underlying language model. We also design and implement a range of automatic metrics for the task of tongue-twister generation that is phonologically motivated and captures the unique essence of tongue-twisters based on Phonemic Edit Distance (PED).
A Cross-Attention Augmented Model for Event-Triggered Context-Aware Story Generation
Tang, Chen, Loakman, Tyler, Lin, Chenghua
Despite recent advancements, existing story generation systems continue to encounter difficulties in effectively incorporating contextual and event features, which greatly influence the quality of generated narratives. To tackle these challenges, we introduce a novel neural generation model, EtriCA, that enhances the relevance and coherence of generated stories by employing a cross-attention mechanism to map context features onto event sequences through residual mapping. This feature capturing mechanism enables our model to exploit logical relationships between events more effectively during the story generation process. To further enhance our proposed model, we employ a post-training framework for knowledge enhancement (KeEtriCA) on a large-scale book corpus. This allows EtriCA to adapt to a wider range of data samples. This results in approximately 5\% improvement in automatic metrics and over 10\% improvement in human evaluation. We conduct extensive experiments, including comparisons with state-of-the-art (SOTA) baseline models, to evaluate the performance of our framework on story generation. The experimental results, encompassing both automated metrics and human assessments, demonstrate the superiority of our model over existing state-of-the-art baselines. These results underscore the effectiveness of our model in leveraging context and event features to improve the quality of generated narratives.
The Iron(ic) Melting Pot: Reviewing Human Evaluation in Humour, Irony and Sarcasm Generation
Loakman, Tyler, Maladry, Aaron, Lin, Chenghua
Human evaluation is often considered to be the gold standard method of evaluating a Natural Language Generation system. However, whilst its importance is accepted by the community at large, the quality of its execution is often brought into question. In this position paper, we argue that the generation of more esoteric forms of language - humour, irony and sarcasm - constitutes a subdomain where the characteristics of selected evaluator panels are of utmost importance, and every effort should be made to report demographic characteristics wherever possible, in the interest of transparency and replicability. We support these claims with an overview of each language form and an analysis of examples in terms of how their interpretation is affected by different participant variables. We additionally perform a critical survey of recent works in NLG to assess how well evaluation procedures are reported in this subdomain, and note a severe lack of open reporting of evaluator demographic information, and a significant reliance on crowdsourcing platforms for recruitment.
Enhancing Dialogue Generation via Dynamic Graph Knowledge Aggregation
Tang, Chen, Zhang, Hongbo, Loakman, Tyler, Lin, Chenghua, Guerin, Frank
Incorporating external graph knowledge into neural chatbot models has been proven effective for enhancing dialogue generation. However, in conventional graph neural networks (GNNs), message passing on a graph is independent from text, resulting in the graph representation hidden space differing from that of the text. This training regime of existing models therefore leads to a semantic gap between graph knowledge and text. In this study, we propose a novel framework for knowledge graph enhanced dialogue generation. We dynamically construct a multi-hop knowledge graph with pseudo nodes to involve the language model in feature aggregation within the graph at all steps. To avoid the semantic biases caused by learning on vanilla subgraphs, the proposed framework applies hierarchical graph attention to aggregate graph features on pseudo nodes and then attains a global feature. Therefore, the framework can better utilise the heterogeneous features from both the post and external graph knowledge. Extensive experiments demonstrate that our framework outperforms state-of-the-art (SOTA) baselines on dialogue generation. Further analysis also shows that our representation learning framework can fill the semantic gap by coagulating representations of both text and graph knowledge. Moreover, the language model also learns how to better select knowledge triples for a more informative response via exploiting subgraph patterns within our feature aggregation process. Our code and resources are available at https://github.com/tangg555/SaBART.
CADGE: Context-Aware Dialogue Generation Enhanced with Graph-Structured Knowledge Aggregation
Zhang, Hongbo, Tang, Chen, Loakman, Tyler, Lin, Chenghua, Goetze, Stefan
Commonsense knowledge is crucial to many natural language processing tasks. Existing works usually incorporate graph knowledge with conventional graph neural networks (GNNs), leading to the text and graph knowledge encoding processes being separated in a serial pipeline. We argue that these separate representation learning stages may be suboptimal for neural networks to learn the overall context contained in both types of input knowledge. In this paper, we propose a novel context-aware graph-attention model (Context-aware GAT), which can effectively incorporate global features of relevant knowledge graphs based on a context-enhanced knowledge aggregation process. Specifically, our framework leverages a novel representation learning approach to process heterogeneous features - combining flattened graph knowledge with text. To the best of our knowledge, this is the first attempt at hierarchically applying graph knowledge aggregation on a connected subgraph in addition to contextual information to support commonsense dialogue generation. This framework shows superior performance compared to conventional GNN-based language frameworks. Both automatic and human evaluation demonstrates that our proposed model has significant performance uplifts over state-of-the-art baselines.
TwistList: Resources and Baselines for Tongue Twister Generation
Loakman, Tyler, Tang, Chen, Lin, Chenghua
Previous work in phonetically-grounded language generation has mainly focused on domains such as lyrics and poetry. In this paper, we present work on the generation of tongue twisters - a form of language that is required to be phonetically conditioned to maximise sound overlap, whilst maintaining semantic consistency with an input topic, and still being grammatically correct. We present \textbf{TwistList}, a large annotated dataset of tongue twisters, consisting of 2.1K+ human-authored examples. We additionally present several benchmark systems (referred to as TwisterMisters) for the proposed task of tongue twister generation, including models that both do and do not require training on in-domain data. We present the results of automatic and human evaluation to demonstrate the performance of existing mainstream pre-trained models in this task with limited (or no) task specific training and data, and no explicit phonetic knowledge. We find that the task of tongue twister generation is challenging for models under these conditions, yet some models are still capable of generating acceptable examples of this language type.