Liu, Zhongyi
Keywords and Instances: A Hierarchical Contrastive Learning Framework Unifying Hybrid Granularities for Text Generation
Li, Mingzhe, Lin, XieXiong, Chen, Xiuying, Chang, Jinxiong, Zhang, Qishen, Wang, Feng, Wang, Taifeng, Liu, Zhongyi, Chu, Wei, Zhao, Dongyan, Yan, Rui
Contrastive learning has achieved impressive success in generation tasks to militate the "exposure bias" problem and discriminatively exploit the different quality of references. Existing works mostly focus on contrastive learning on the instance-level without discriminating the contribution of each word, while keywords are the gist of the text and dominant the constrained mapping relationships. Hence, in this work, we propose a hierarchical contrastive learning mechanism, which can unify hybrid granularities semantic meaning in the input text. Concretely, we first propose a keyword graph via contrastive correlations of positive-negative pairs to iteratively polish the keyword representations. Then, we construct intra-contrasts within instance-level and keyword-level, where we assume words are sampled nodes from a sentence distribution. Finally, to bridge the gap between independent contrast levels and tackle the common contrast vanishing problem, we propose an inter-contrast mechanism that measures the discrepancy between contrastive keyword nodes respectively to the instance distribution. Experiments demonstrate that our model outperforms competitive baselines on paraphrasing, dialogue generation, and storytelling tasks.
CPRM: A LLM-based Continual Pre-training Framework for Relevance Modeling in Commercial Search
Wu, Kaixin, Ji, Yixin, Chen, Zeyuan, Wang, Qiang, Wang, Cunxiang, Liu, Hong, Ji, Baijun, Xu, Jia, Liu, Zhongyi, Gu, Jinjie, Zhou, Yuan, Mo, Linjian
Relevance modeling between queries and items stands as a pivotal component in commercial search engines, directly affecting the user experience. Given the remarkable achievements of large language models (LLMs) in various natural language processing (NLP) tasks, LLM-based relevance modeling is gradually being adopted within industrial search systems. Nevertheless, foundational LLMs lack domain-specific knowledge and do not fully exploit the potential of in-context learning. Furthermore, structured item text remains underutilized, and there is a shortage in the supply of corresponding queries and background knowledge. We thereby propose CPRM (Continual Pre-training for Relevance Modeling), a framework designed for the continual pre-training of LLMs to address these issues. Our CPRM framework includes three modules: 1) employing both queries and multi-field item to jointly pre-train for enhancing domain knowledge, 2) applying in-context pre-training, a novel approach where LLMs are pre-trained on a sequence of related queries or items, and 3) conducting reading comprehension on items to produce associated domain knowledge and background information (e.g., generating summaries and corresponding queries) to further strengthen LLMs. Results on offline experiments and online A/B testing demonstrate that our model achieves convincing performance compared to strong baselines.
SEMINAR: Search Enhanced Multi-modal Interest Network and Approximate Retrieval for Lifelong Sequential Recommendation
Shen, Kaiming, Ding, Xichen, Zheng, Zixiang, Gong, Yuqi, Li, Qianqian, Liu, Zhongyi, Zhang, Guannan
The modeling of users' behaviors is crucial in modern recommendation systems. A lot of research focuses on modeling users' lifelong sequences, which can be extremely long and sometimes exceed thousands of items. These models use the target item to search for the most relevant items from the historical sequence. However, training lifelong sequences in click through rate (CTR) prediction or personalized search ranking (PSR) is extremely difficult due to the insufficient learning problem of ID embedding, especially when the IDs in the lifelong sequence features do not exist in the samples of training dataset. Additionally, existing target attention mechanisms struggle to learn the multi-modal representations of items in the sequence well. The distribution of multi-modal embedding (text, image and attributes) output of user's interacted items are not properly aligned and there exist divergence across modalities. We also observe that users' search query sequences and item browsing sequences can fully depict users' intents and benefit from each other. To address these challenges, we propose a unified lifelong multi-modal sequence model called SEMINAR-Search Enhanced Multi-Modal Interest Network and Approximate Retrieval. Specifically, a network called Pretraining Search Unit (PSU) learns the lifelong sequences of multi-modal query-item pairs in a pretraining-finetuning manner with multiple objectives: multi-modal alignment, next query-item pair prediction, query-item relevance prediction, etc. After pretraining, the downstream model restores the pretrained embedding as initialization and finetunes the network. To accelerate the online retrieval speed of multi-modal embedding, we propose a multi-modal codebook-based product quantization strategy to approximate the exact attention calculati
Feature-based Low-Rank Compression of Large Language Models via Bayesian Optimization
Ji, Yixin, Xiang, Yang, Li, Juntao, Chen, Wei, Liu, Zhongyi, Chen, Kehai, Zhang, Min
In recent years, large language models (LLMs) have driven advances in natural language processing. Still, their growing scale has increased the computational burden, necessitating a balance between efficiency and performance. Low-rank compression, a promising technique, reduces non-essential parameters by decomposing weight matrices into products of two low-rank matrices. Yet, its application in LLMs has not been extensively studied. The key to low-rank compression lies in low-rank factorization and low-rank dimensions allocation. To address the challenges of low-rank compression in LLMs, we conduct empirical research on the low-rank characteristics of large models. We propose a low-rank compression method suitable for LLMs. This approach involves precise estimation of feature distributions through pooled covariance matrices and a Bayesian optimization strategy for allocating low-rank dimensions. Experiments on the LLaMA-2 models demonstrate that our method outperforms existing strong structured pruning and low-rank compression techniques in maintaining model performance at the same compression ratio.
Multi-Intent Attribute-Aware Text Matching in Searching
Li, Mingzhe, Chen, Xiuying, Xiang, Jing, Zhang, Qishen, Ma, Changsheng, Dai, Chenchen, Chang, Jinxiong, Liu, Zhongyi, Zhang, Guannan
Text matching systems have become a fundamental service in most searching platforms. For instance, they are responsible for matching user queries to relevant candidate items, or rewriting the user-input query to a pre-selected high-performing one for a better search experience. In practice, both the queries and items often contain multiple attributes, such as the category of the item and the location mentioned in the query, which represent condensed key information that is helpful for matching. However, most of the existing works downplay the effectiveness of attributes by integrating them into text representations as supplementary information. Hence, in this work, we focus on exploring the relationship between the attributes from two sides. Since attributes from two ends are often not aligned in terms of number and type, we propose to exploit the benefit of attributes by multiple-intent modeling. The intents extracted from attributes summarize the diverse needs of queries and provide rich content of items, which are more refined and abstract, and can be aligned for paired inputs. Concretely, we propose a multi-intent attribute-aware matching model (MIM), which consists of three main components: attribute-aware encoder, multi-intent modeling, and intent-aware matching. In the attribute-aware encoder, the text and attributes are weighted and processed through a scaled attention mechanism with regard to the attributes' importance. Afterward, the multi-intent modeling extracts intents from two ends and aligns them. Herein, we come up with a distribution loss to ensure the learned intents are diverse but concentrated, and a kullback-leibler divergence loss that aligns the learned intents. Finally, in the intent-aware matching, the intents are evaluated by a self-supervised masking task, and then incorporated to output the final matching result.
Dual-Modal Attention-Enhanced Text-Video Retrieval with Triplet Partial Margin Contrastive Learning
Jiang, Chen, Liu, Hong, Yu, Xuzheng, Wang, Qing, Cheng, Yuan, Xu, Jia, Liu, Zhongyi, Guo, Qingpei, Chu, Wei, Yang, Ming, Qi, Yuan
In recent years, the explosion of web videos makes text-video retrieval increasingly essential and popular for video filtering, recommendation, and search. Text-video retrieval aims to rank relevant text/video higher than irrelevant ones. The core of this task is to precisely measure the cross-modal similarity between texts and videos. Recently, contrastive learning methods have shown promising results for text-video retrieval, most of which focus on the construction of positive and negative pairs to learn text and video representations. Nevertheless, they do not pay enough attention to hard negative pairs and lack the ability to model different levels of semantic similarity. To address these two issues, this paper improves contrastive learning using two novel techniques. First, to exploit hard examples for robust discriminative power, we propose a novel Dual-Modal Attention-Enhanced Module (DMAE) to mine hard negative pairs from textual and visual clues. By further introducing a Negative-aware InfoNCE (NegNCE) loss, we are able to adaptively identify all these hard negatives and explicitly highlight their impacts in the training loss. Second, our work argues that triplet samples can better model fine-grained semantic similarity compared to pairwise samples. We thereby present a new Triplet Partial Margin Contrastive Learning (TPM-CL) module to construct partial order triplet samples by automatically generating fine-grained hard negatives for matched text-video pairs. The proposed TPM-CL designs an adaptive token masking strategy with cross-modal interaction to model subtle semantic differences. Extensive experiments demonstrate that the proposed approach outperforms existing methods on four widely-used text-video retrieval datasets, including MSR-VTT, MSVD, DiDeMo and ActivityNet.
Beyond Semantics: Learning a Behavior Augmented Relevance Model with Self-supervised Learning
Chen, Zeyuan, Chen, Wei, Xu, Jia, Liu, Zhongyi, Zhang, Wei
Relevance modeling aims to locate desirable items for corresponding queries, which is crucial for search engines to ensure user experience. Although most conventional approaches address this problem by assessing the semantic similarity between the query and item, pure semantic matching is not everything. In reality, auxiliary query-item interactions extracted from user historical behavior data of the search log could provide hints to reveal users' search intents further. Drawing inspiration from this, we devise a novel Behavior Augmented Relevance Learning model for Alipay Search (BARL-ASe) that leverages neighbor queries of target item and neighbor items of target query to complement target query-item semantic matching. Specifically, our model builds multi-level co-attention for distilling coarse-grained and fine-grained semantic representations from both neighbor and target views. The model subsequently employs neighbor-target self-supervised learning to improve the accuracy and robustness of BARL-ASe by strengthening representation and logit learning. Furthermore, we discuss how to deal with the long-tail query-item matching of the mini apps search scenario of Alipay practically. Experiments on real-world industry data and online A/B testing demonstrate our proposal achieves promising performance with low latency.
VQGraph: Rethinking Graph Representation Space for Bridging GNNs and MLPs
Yang, Ling, Tian, Ye, Xu, Minkai, Liu, Zhongyi, Hong, Shenda, Qu, Wei, Zhang, Wentao, Cui, Bin, Zhang, Muhan, Leskovec, Jure
GNN-to-MLP distillation aims to utilize knowledge distillation (KD) to learn computationally-efficient multi-layer perceptron (student MLP) on graph data by mimicking the output representations of teacher GNN. Existing methods mainly make the MLP to mimic the GNN predictions over a few class labels. However, the class space may not be expressive enough for covering numerous diverse local graph structures, thus limiting the performance of knowledge transfer from GNN to MLP. To address this issue, we propose to learn a new powerful graph representation space by directly labeling nodes' diverse local structures for GNN-to-MLP distillation. Specifically, we propose a variant of VQ-VAE to learn a structure-aware tokenizer on graph data that can encode each node's local substructure as a discrete code. The discrete codes constitute a codebook as a new graph representation space that is able to identify different local graph structures of nodes with the corresponding code indices. Then, based on the learned codebook, we propose a new distillation target, namely soft code assignments, to directly transfer the structural knowledge of each node from GNN to MLP. The resulting framework VQGraph achieves new state-of-the-art performance on GNN-to-MLP distillation in both transductive and inductive settings across seven graph datasets. We show that VQGraph with better performance infers faster than GNNs by 828x, and also achieves accuracy improvement over GNNs and stand-alone MLPs by 3.90% and 28.05% on average, respectively. Code: https://github.com/YangLing0818/VQGraph.
An Unified Search and Recommendation Foundation Model for Cold-Start Scenario
Gong, Yuqi, Ding, Xichen, Su, Yehui, Shen, Kaiming, Liu, Zhongyi, Zhang, Guannan
In modern commercial search engines and recommendation systems, data from multiple domains is available to jointly train the multi-domain model. Traditional methods train multi-domain models in the multi-task setting, with shared parameters to learn the similarity of multiple tasks, and task-specific parameters to learn the divergence of features, labels, and sample distributions of individual tasks. With the development of large language models, LLM can extract global domain-invariant text features that serve both search and recommendation tasks. We propose a novel framework called S\&R Multi-Domain Foundation, which uses LLM to extract domain invariant features, and Aspect Gating Fusion to merge the ID feature, domain invariant text features and task-specific heterogeneous sparse features to obtain the representations of query and item. Additionally, samples from multiple search and recommendation scenarios are trained jointly with Domain Adaptive Multi-Task module to obtain the multi-domain foundation model. We apply the S\&R Multi-Domain foundation model to cold start scenarios in the pretrain-finetune manner, which achieves better performance than other SOTA transfer learning methods. The S\&R Multi-Domain Foundation model has been successfully deployed in Alipay Mobile Application's online services, such as content query recommendation and service card recommendation, etc.
AntM$^{2}$C: A Large Scale Dataset For Multi-Scenario Multi-Modal CTR Prediction
Huan, Zhaoxin, Ding, Ke, Li, Ang, Zhang, Xiaolu, Min, Xu, He, Yong, Zhang, Liang, Zhou, Jun, Mo, Linjian, Gu, Jinjie, Liu, Zhongyi, Zhong, Wenliang, Zhang, Guannan
Click-through rate (CTR) prediction is a crucial issue in recommendation systems. There has been an emergence of various public CTR datasets. However, existing datasets primarily suffer from the following limitations. Firstly, users generally click different types of items from multiple scenarios, and modeling from multiple scenarios can provide a more comprehensive understanding of users. Existing datasets only include data for the same type of items from a single scenario. Secondly, multi-modal features are essential in multi-scenario prediction as they address the issue of inconsistent ID encoding between different scenarios. The existing datasets are based on ID features and lack multi-modal features. Third, a large-scale dataset can provide a more reliable evaluation of models, fully reflecting the performance differences between models. The scale of existing datasets is around 100 million, which is relatively small compared to the real-world CTR prediction. To address these limitations, we propose AntM$^{2}$C, a Multi-Scenario Multi-Modal CTR dataset based on industrial data from Alipay. Specifically, AntM$^{2}$C provides the following advantages: 1) It covers CTR data of 5 different types of items, providing insights into the preferences of users for different items, including advertisements, vouchers, mini-programs, contents, and videos. 2) Apart from ID-based features, AntM$^{2}$C also provides 2 multi-modal features, raw text and image features, which can effectively establish connections between items with different IDs. 3) AntM$^{2}$C provides 1 billion CTR data with 200 features, including 200 million users and 6 million items. It is currently the largest-scale CTR dataset available. Based on AntM$^{2}$C, we construct several typical CTR tasks and provide comparisons with baseline methods. The dataset homepage is available at https://www.atecup.cn/home.