Liu, Xunying
Effective and Efficient Mixed Precision Quantization of Speech Foundation Models
Xu, Haoning, Li, Zhaoqing, Jin, Zengrui, Wang, Huimeng, Chen, Youjun, Li, Guinan, Geng, Mengzhe, Hu, Shujie, Deng, Jiajun, Liu, Xunying
This paper presents a novel mixed-precision quantization approach for speech foundation models that tightly integrates mixed-precision learning and quantized model parameter estimation into one single model compression stage. Experiments conducted on LibriSpeech dataset with fine-tuned wav2vec2.0-base and HuBERT-large models suggest the resulting mixed-precision quantized models increased the lossless compression ratio by factors up to 1.7x and 1.9x over the respective uniform-precision and two-stage mixed-precision quantized baselines that perform precision learning and model parameters quantization in separate and disjointed stages, while incurring no statistically word error rate (WER) increase over the 32-bit full-precision models. The system compression time of wav2vec2.0-base and HuBERT-large models is reduced by up to 1.9 and 1.5 times over the two-stage mixed-precision baselines, while both produce lower WERs. The best-performing 3.5-bit mixed-precision quantized HuBERT-large model produces a lossless compression ratio of 8.6x over the 32-bit full-precision system.
Detecting Neurocognitive Disorders through Analyses of Topic Evolution and Cross-modal Consistency in Visual-Stimulated Narratives
Li, Jinchao, Wang, Yuejiao, Li, Junan, Kang, Jiawen, Zheng, Bo, Wong, Simon, Mak, Brian, Fung, Helene, Woo, Jean, Mak, Man-Wai, Kwok, Timothy, Mok, Vincent, Gong, Xianmin, Wu, Xixin, Liu, Xunying, Wong, Patrick, Meng, Helen
Early detection of neurocognitive disorders (NCDs) is crucial for timely intervention and disease management. Speech analysis offers a non-intrusive and scalable screening method, particularly through narrative tasks in neuropsychological assessment tools. Traditional narrative analysis often focuses on local indicators in microstructure, such as word usage and syntax. While these features provide insights into language production abilities, they often fail to capture global narrative patterns, or microstructures. Macrostructures include coherence, thematic organization, and logical progressions, reflecting essential cognitive skills potentially critical for recognizing NCDs. Addressing this gap, we propose to investigate specific cognitive and linguistic challenges by analyzing topical shifts, temporal dynamics, and the coherence of narratives over time, aiming to reveal cognitive deficits by identifying narrative impairments, and exploring their impact on communication and cognition. The investigation is based on the CU-MARVEL Rabbit Story corpus, which comprises recordings of a story-telling task from 758 older adults. We developed two approaches: the Dynamic Topic Models (DTM)-based temporal analysis to examine the evolution of topics over time, and the Text-Image Temporal Alignment Network (TITAN) to evaluate the coherence between spoken narratives and visual stimuli. DTM-based approach validated the effectiveness of dynamic topic consistency as a macrostructural metric (F1=0.61, AUC=0.78). The TITAN approach achieved the highest performance (F1=0.72, AUC=0.81), surpassing established microstructural and macrostructural feature sets. Cross-comparison and regression tasks further demonstrated the effectiveness of proposed dynamic macrostructural modeling approaches for NCD detection.
Improving Grapheme-to-Phoneme Conversion through In-Context Knowledge Retrieval with Large Language Models
Han, Dongrui, Cui, Mingyu, Kang, Jiawen, Wu, Xixin, Liu, Xunying, Meng, Helen
Grapheme-to-phoneme (G2P) conversion is a crucial step in Text-to-Speech (TTS) systems, responsible for mapping grapheme to corresponding phonetic representations. However, it faces ambiguities problems where the same grapheme can represent multiple phonemes depending on contexts, posing a challenge for G2P conversion. Inspired by the remarkable success of Large Language Models (LLMs) in handling context-aware scenarios, contextual G2P conversion systems with LLMs' in-context knowledge retrieval (ICKR) capabilities are proposed to promote disambiguation capability. The efficacy of incorporating ICKR into G2P conversion systems is demonstrated thoroughly on the Librig2p dataset. In particular, the best contextual G2P conversion system using ICKR outperforms the baseline with weighted average phoneme error rate (PER) reductions of 2.0% absolute (28.9% relative). Using GPT-4 in the ICKR system can increase of 3.5% absolute (3.8% relative) on the Librig2p dataset.
Towards Effective and Efficient Non-autoregressive Decoding Using Block-based Attention Mask
Wang, Tianzi, Xie, Xurong, Li, Zhaoqing, Hu, Shoukang, Jing, Zengrui, Deng, Jiajun, Cui, Mingyu, Hu, Shujie, Geng, Mengzhe, Li, Guinan, Meng, Helen, Liu, Xunying
This paper proposes a novel non-autoregressive (NAR) block-based Attention Mask Decoder (AMD) that flexibly balances performance-efficiency trade-offs for Conformer ASR systems. AMD performs parallel NAR inference within contiguous blocks of output labels that are concealed using attention masks, while conducting left-to-right AR prediction and history context amalgamation between blocks. A beam search algorithm is designed to leverage a dynamic fusion of CTC, AR Decoder, and AMD probabilities. Experiments on the LibriSpeech-100hr corpus suggest the tripartite Decoder incorporating the AMD module produces a maximum decoding speed-up ratio of 1.73x over the baseline CTC+AR decoding, while incurring no statistically significant word error rate (WER) increase on the test sets. When operating with the same decoding real time factors, statistically significant WER reductions of up to 0.7% and 0.3% absolute (5.3% and 6.1% relative) were obtained over the CTC+AR baseline.
Empowering Whisper as a Joint Multi-Talker and Target-Talker Speech Recognition System
Meng, Lingwei, Kang, Jiawen, Wang, Yuejiao, Jin, Zengrui, Wu, Xixin, Liu, Xunying, Meng, Helen
Multi-talker speech recognition and target-talker speech recognition, both involve transcription in multi-talker contexts, remain significant challenges. However, existing methods rarely attempt to simultaneously address both tasks. In this study, we propose a pioneering approach to empower Whisper, which is a speech foundation model, to tackle joint multi-talker and target-talker speech recognition tasks. Specifically, (i) we freeze Whisper and plug a Sidecar separator into its encoder to separate mixed embedding for multiple talkers; (ii) a Target Talker Identifier is introduced to identify the embedding flow of the target talker on the fly, requiring only three-second enrollment speech as a cue; (iii) soft prompt tuning for decoder is explored for better task adaptation. Our method outperforms previous methods on two- and three-talker LibriMix and LibriSpeechMix datasets for both tasks, and delivers acceptable zero-shot performance on multi-talker ASR on AishellMix Mandarin dataset.
Homogeneous Speaker Features for On-the-Fly Dysarthric and Elderly Speaker Adaptation
Geng, Mengzhe, Xie, Xurong, Deng, Jiajun, Jin, Zengrui, Li, Guinan, Wang, Tianzi, Hu, Shujie, Li, Zhaoqing, Meng, Helen, Liu, Xunying
The application of data-intensive automatic speech recognition (ASR) technologies to dysarthric and elderly adult speech is confronted by their mismatch against healthy and nonaged voices, data scarcity and large speaker-level variability. To this end, this paper proposes two novel data-efficient methods to learn homogeneous dysarthric and elderly speaker-level features for rapid, on-the-fly test-time adaptation of DNN/TDNN and Conformer ASR models. These include: 1) speaker-level variance-regularized spectral basis embedding (VR-SBE) features that exploit a special regularization term to enforce homogeneity of speaker features in adaptation; and 2) feature-based learning hidden unit contributions (f-LHUC) transforms that are conditioned on VR-SBE features. Experiments are conducted on four tasks across two languages: the English UASpeech and TORGO dysarthric speech datasets, the English DementiaBank Pitt and Cantonese JCCOCC MoCA elderly speech corpora. The proposed on-the-fly speaker adaptation techniques consistently outperform baseline iVector and xVector adaptation by statistically significant word or character error rate reductions up to 5.32% absolute (18.57% relative) and batch-mode LHUC speaker adaptation by 2.24% absolute (9.20% relative), while operating with real-time factors speeding up to 33.6 times against xVectors during adaptation. The efficacy of the proposed adaptation techniques is demonstrated in a comparison against current ASR technologies including SSL pre-trained systems on UASpeech, where our best system produces a state-of-the-art WER of 23.33%. Analyses show VR-SBE features and f-LHUC transforms are insensitive to speaker-level data quantity in testtime adaptation. T-SNE visualization reveals they have stronger speaker-level homogeneity than baseline iVectors, xVectors and batch-mode LHUC transforms.
Perceiver-Prompt: Flexible Speaker Adaptation in Whisper for Chinese Disordered Speech Recognition
Jiang, Yicong, Wang, Tianzi, Xie, Xurong, Liu, Juan, Sun, Wei, Yan, Nan, Chen, Hui, Wang, Lan, Liu, Xunying, Tian, Feng
Disordered speech recognition profound implications for improving the quality of life for individuals afflicted with, for example, dysarthria. Dysarthric speech recognition encounters challenges including limited data, substantial dissimilarities between dysarthric and non-dysarthric speakers, and significant speaker variations stemming from the disorder. This paper introduces Perceiver-Prompt, a method for speaker adaptation that utilizes P-Tuning on the Whisper large-scale model. We first fine-tune Whisper using LoRA and then integrate a trainable Perceiver to generate fixed-length speaker prompts from variable-length inputs, to improve model recognition of Chinese dysarthric speech. Experimental results from our Chinese dysarthric speech dataset demonstrate consistent improvements in recognition performance with Perceiver-Prompt. Relative reduction up to 13.04% in CER is obtained over the fine-tuned Whisper.
One-pass Multiple Conformer and Foundation Speech Systems Compression and Quantization Using An All-in-one Neural Model
Li, Zhaoqing, Xu, Haoning, Wang, Tianzi, Hu, Shoukang, Jin, Zengrui, Hu, Shujie, Deng, Jiajun, Cui, Mingyu, Geng, Mengzhe, Liu, Xunying
We propose a novel one-pass multiple ASR systems joint compression and quantization approach using an all-in-one neural model. A single compression cycle allows multiple nested systems with varying Encoder depths, widths, and quantization precision settings to be simultaneously constructed without the need to train and store individual target systems separately. Experiments consistently demonstrate the multiple ASR systems compressed in a single all-in-one model produced a word error rate (WER) comparable to, or lower by up to 1.01\% absolute (6.98\% relative) than individually trained systems of equal complexity. A 3.4x overall system compression and training time speed-up was achieved. Maximum model size compression ratios of 12.8x and 3.93x were obtained over the baseline Switchboard-300hr Conformer and LibriSpeech-100hr fine-tuned wav2vec2.0 models, respectively, incurring no statistically significant WER increase.
WavLLM: Towards Robust and Adaptive Speech Large Language Model
Hu, Shujie, Zhou, Long, Liu, Shujie, Chen, Sanyuan, Hao, Hongkun, Pan, Jing, Liu, Xunying, Li, Jinyu, Sivasankaran, Sunit, Liu, Linquan, Wei, Furu
The recent advancements in large language models (LLMs) have revolutionized the field of natural language processing, progressively broadening their scope to multimodal perception and generation. However, effectively integrating listening capabilities into LLMs poses significant challenges, particularly with respect to generalizing across varied contexts and executing complex auditory tasks. In this work, we introduce WavLLM, a robust and adaptive speech large language model with dual encoders, and a prompt-aware LoRA weight adapter, optimized by a two-stage curriculum learning approach. Leveraging dual encoders, we decouple different types of speech information, utilizing a Whisper encoder to process the semantic content of speech, and a WavLM encoder to capture the unique characteristics of the speaker's identity. Within the curriculum learning framework, WavLLM first builds its foundational capabilities by optimizing on mixed elementary single tasks, followed by advanced multi-task training on more complex tasks such as combinations of the elementary tasks. To enhance the flexibility and adherence to different tasks and instructions, a prompt-aware LoRA weight adapter is introduced in the second advanced multi-task training stage. We validate the proposed model on universal speech benchmarks including tasks such as ASR, ST, SV, ER, and also apply it to specialized datasets like Gaokao English listening comprehension set for SQA, and speech Chain-of-Thought (CoT) evaluation set. Experiments demonstrate that the proposed model achieves state-of-the-art performance across a range of speech tasks on the same model size, exhibiting robust generalization capabilities in executing complex tasks using CoT approach. Furthermore, our model successfully completes Gaokao tasks without specialized training. The codes, models, audio, and Gaokao evaluation set can be accessed at \url{aka.ms/wavllm}.
Cross-Speaker Encoding Network for Multi-Talker Speech Recognition
Kang, Jiawen, Meng, Lingwei, Cui, Mingyu, Guo, Haohan, Wu, Xixin, Liu, Xunying, Meng, Helen
End-to-end multi-talker speech recognition has garnered great interest as an effective approach to directly transcribe overlapped speech from multiple speakers. Current methods typically adopt either 1) single-input multiple-output (SIMO) models with a branched encoder, or 2) single-input single-output (SISO) models based on attention-based encoder-decoder architecture with serialized output training (SOT). In this work, we propose a Cross-Speaker Encoding (CSE) network to address the limitations of SIMO models by aggregating cross-speaker representations. Furthermore, the CSE model is integrated with SOT to leverage both the advantages of SIMO and SISO while mitigating their drawbacks. To the best of our knowledge, this work represents an early effort to integrate SIMO and SISO for multi-talker speech recognition. Experiments on the two-speaker LibrispeechMix dataset show that the CES model reduces word error rate (WER) by 8% over the SIMO baseline. The CSE-SOT model reduces WER by 10% overall and by 16% on high-overlap speech compared to the SOT model.