Not enough data to create a plot.
Try a different view from the menu above.
Liu, Xiao
Enhancing Federated Learning Through Secure Cluster-Weighted Client Aggregation
Ranaweera, Kanishka, Neiat, Azadeh Ghari, Liu, Xiao, Kashyap, Bipasha, Pathirana, Pubudu N.
Federated learning (FL) has emerged as a promising paradigm in machine learning, enabling collaborative model training across decentralized devices without the need for raw data sharing. In FL, a global model is trained iteratively on local datasets residing on individual devices, each contributing to the model's improvement. However, the heterogeneous nature of these local datasets, stemming from diverse user behaviours, device capabilities, and data distributions, poses a significant challenge. The inherent heterogeneity in federated learning gives rise to various issues, including model performance discrepancies, convergence challenges, and potential privacy concerns. As the global model progresses through rounds of training, the disparities in local data quality and quantity can impede the overall effectiveness of federated learning systems. Moreover, maintaining fairness and privacy across diverse user groups becomes a paramount concern. To address this issue, this paper introduces a novel FL framework, ClusterGuardFL, that employs dissimilarity scores, k-means clustering, and reconciliation confidence scores to dynamically assign weights to client updates. The dissimilarity scores between global and local models guide the formation of clusters, with cluster size influencing the weight allocation. Within each cluster, a reconciliation confidence score is calculated for individual data points, and a softmax layer generates customized weights for clients. These weights are utilized in the aggregation process, enhancing the model's robustness and privacy. Experimental results demonstrate the efficacy of the proposed approach in achieving improved model performance in diverse datasets.
VPO: Aligning Text-to-Video Generation Models with Prompt Optimization
Cheng, Jiale, Lyu, Ruiliang, Gu, Xiaotao, Liu, Xiao, Xu, Jiazheng, Lu, Yida, Teng, Jiayan, Yang, Zhuoyi, Dong, Yuxiao, Tang, Jie, Wang, Hongning, Huang, Minlie
Video generation models have achieved remarkable progress in text-to-video tasks. These models are typically trained on text-video pairs with highly detailed and carefully crafted descriptions, while real-world user inputs during inference are often concise, vague, or poorly structured. This gap makes prompt optimization crucial for generating high-quality videos. Current methods often rely on large language models (LLMs) to refine prompts through in-context learning, but suffer from several limitations: they may distort user intent, omit critical details, or introduce safety risks. Moreover, they optimize prompts without considering the impact on the final video quality, which can lead to suboptimal results. To address these issues, we introduce VPO, a principled framework that optimizes prompts based on three core principles: harmlessness, accuracy, and helpfulness. The generated prompts faithfully preserve user intents and, more importantly, enhance the safety and quality of generated videos. To achieve this, VPO employs a two-stage optimization approach. First, we construct and refine a supervised fine-tuning (SFT) dataset based on principles of safety and alignment. Second, we introduce both text-level and video-level feedback to further optimize the SFT model with preference learning. Our extensive experiments demonstrate that VPO significantly improves safety, alignment, and video quality compared to baseline methods. Moreover, VPO shows strong generalization across video generation models. Furthermore, we demonstrate that VPO could outperform and be combined with RLHF methods on video generation models, underscoring the effectiveness of VPO in aligning video generation models. Our code and data are publicly available at https://github.com/thu-coai/VPO.
Overcoming Vocabulary Mismatch: Vocabulary-agnostic Teacher Guided Language Modeling
Shin, Haebin, Ji, Lei, Liu, Xiao, Gong, Yeyun
Using large teacher models to guide the training of smaller student models has become the prevailing paradigm for efficient and effective learning. However, vocabulary mismatches between teacher and student language models pose significant challenges in language modeling, resulting in divergent token sequences and output distributions. To overcome these limitations, we propose Vocabulary-agnostic Teacher Guided Language Modeling (VocAgnoLM), a novel approach that bridges the gap caused by vocabulary mismatch through two key methods: (1) Token-level Lexical Alignment, which aligns token sequences across mismatched vocabularies, and (2) Teacher Guided Loss, which leverages the loss of teacher model to guide effective student training. We demonstrate its effectiveness in language modeling with 1B student model using various 7B teacher models with different vocabularies. Notably, with Qwen2.5-Math-Instruct, a teacher model sharing only about 6% of its vocabulary with TinyLlama, VocAgnoLM achieves a 46% performance improvement compared to naive continual pretraining. Furthermore, we demonstrate that VocAgnoLM consistently benefits from stronger teacher models, providing a robust solution to vocabulary mismatches in language modeling.
Process-based Self-Rewarding Language Models
Zhang, Shimao, Liu, Xiao, Zhang, Xin, Liu, Junxiao, Luo, Zheheng, Huang, Shujian, Gong, Yeyun
Large Language Models have demonstrated outstanding performance across various downstream tasks and have been widely applied in multiple scenarios. Human-annotated preference data is used for training to further improve LLMs' performance, which is constrained by the upper limit of human performance. Therefore, Self-Rewarding method has been proposed, where LLMs generate training data by rewarding their own outputs. However, the existing self-rewarding paradigm is not effective in mathematical reasoning scenarios and may even lead to a decline in performance. In this work, we propose the Process-based Self-Rewarding pipeline for language models, which introduces long-thought reasoning, step-wise LLM-as-a-Judge, and step-wise preference optimization within the self-rewarding paradigm. Our new paradigm successfully enhances the performance of LLMs on multiple mathematical reasoning benchmarks through iterative Process-based Self-Rewarding, demonstrating the immense potential of self-rewarding to achieve LLM reasoning that may surpass human capabilities.
Automated Annotation of Evolving Corpora for Augmenting Longitudinal Network Data: A Framework Integrating Large Language Models and Expert Knowledge
Liu, Xiao, Wu, Zirui, Li, Jiayi, Shao, Zhicheng, Pang, Xun, Feng, Yansong
Longitudinal network data are essential for analyzing political, economic, and social systems and processes. In political science, these datasets are often generated through human annotation or supervised machine learning applied to evolving corpora. However, as semantic contexts shift over time, inferring dynamic interaction types on emerging issues among a diverse set of entities poses significant challenges, particularly in maintaining timely and consistent annotations. This paper presents the Expert-Augmented LLM Annotation (EALA) approach, which leverages Large Language Models (LLMs) in combination with historically annotated data and expert-constructed codebooks to extrapolate and extend datasets into future periods. We evaluate the performance and reliability of EALA using a dataset of climate negotiations. Our findings demonstrate that EALA effectively predicts nuanced interactions between negotiation parties and captures the evolution of topics over time. At the same time, we identify several limitations inherent to LLM-based annotation, highlighting areas for further improvement. Given the wide availability of codebooks and annotated datasets, EALA holds substantial promise for advancing research in political science and beyond.
Haste Makes Waste: Evaluating Planning Abilities of LLMs for Efficient and Feasible Multitasking with Time Constraints Between Actions
Wu, Zirui, Liu, Xiao, Li, Jiayi, Kong, Lingpeng, Feng, Yansong
While Large Language Model-based agents have demonstrated substantial progress in task completion, existing evaluation benchmarks tend to overemphasize single-task performance, with insufficient attention given to the crucial aspects of multitask planning and execution efficiency required in real-world scenarios. To bridge this gap, we present Recipe2Plan, a novel benchmark framework based on real-world cooking scenarios. Unlike conventional benchmarks, Recipe2Plan challenges agents to optimize cooking time through parallel task execution while respecting temporal constraints i.e. specific actions need to be performed within a particular time intervals following the preceding steps. Overly aggressive local parallelization may disrupt this constraint, potentially compromising the entire cooking process. This strict time constraint between actions raises a unique challenge for agents to balance between maximizing concurrent operations and adhering to critical timing constraints. Extensive experiments with state-of-the-art models reveal challenges in maintaining this balance between efficiency and feasibility. The results highlight the need for improved temporal awareness and global multitasking capabilities in large language models. We open-source our benchmark and code at https://github.com/WilliamZR/Recipe2Plan.
GATE: Graph-based Adaptive Tool Evolution Across Diverse Tasks
Luo, Jianwen, Huang, Yiming, Meng, Jinxiang, Lei, Fangyu, He, Shizhu, Liu, Xiao, Jiang, Shanshan, Dong, Bin, Zhao, Jun, Liu, Kang
Large Language Models (LLMs) have shown great promise in tool-making, yet existing frameworks often struggle to efficiently construct reliable toolsets and are limited to single-task settings. To address these challenges, we propose GATE (Graph-based Adaptive Tool Evolution), an adaptive framework that dynamically constructs and evolves a hierarchical graph of reusable tools across multiple scenarios. We evaluate GATE on open-ended tasks (Minecraft), agent-based tasks (TextCraft, DABench), and code generation tasks (MATH, Date, TabMWP). Our results show that GATE achieves up to 4.3x faster milestone completion in Minecraft compared to the previous SOTA, and provides an average improvement of 9.23% over existing tool-making methods in code generation tasks and 10.03% in agent tasks. GATE demonstrates the power of adaptive evolution, balancing tool quantity, complexity, and functionality while maintaining high efficiency. Code and data are available at \url{https://github.com/ayanami2003/GATE}.
Who's the MVP? A Game-Theoretic Evaluation Benchmark for Modular Attribution in LLM Agents
Yang, Yingxuan, Huang, Bo, Qi, Siyuan, Feng, Chao, Hu, Haoyi, Zhu, Yuxuan, Hu, Jinbo, Zhao, Haoran, He, Ziyi, Liu, Xiao, Wang, Zongyu, Qiu, Lin, Cao, Xuezhi, Cai, Xunliang, Yu, Yong, Zhang, Weinan
Large Language Model (LLM) agents frameworks often employ modular architectures, incorporating components such as planning, reasoning, action execution, and reflection to tackle complex tasks. However, quantifying the contribution of each module to overall system performance remains a significant challenge, impeding optimization and interpretability. To address this, we introduce CapaBench (Capability-level Assessment Benchmark), an evaluation framework grounded in cooperative game theory's Shapley Value, which systematically measures the marginal impact of individual modules and their interactions within an agent's architecture. By replacing default modules with test variants across all possible combinations, CapaBench provides a principle method for attributing performance contributions. Key contributions include: (1) We are the first to propose a Shapley Value-based methodology for quantifying the contributions of capabilities in LLM agents; (2) Modules with high Shapley Values consistently lead to predictable performance gains when combined, enabling targeted optimization; and (3) We build a multi-round dataset of over 1,500 entries spanning diverse domains and practical task scenarios, enabling comprehensive evaluation of agent capabilities. CapaBench bridges the gap between component-level evaluation and holistic system assessment, providing actionable insights for optimizing modular LLM agents and advancing their deployment in complex, real-world scenarios.
Sigma: Differential Rescaling of Query, Key and Value for Efficient Language Models
Lin, Zhenghao, Tang, Zihao, Liu, Xiao, Gong, Yeyun, Cheng, Yi, Chen, Qi, Li, Hang, Xin, Ying, Yang, Ziyue, Yang, Kailai, Yan, Yu, Liang, Xiao, Lu, Shuai, Huang, Yiming, Luo, Zheheng, Qu, Lei, Feng, Xuan, Wang, Yaoxiang, Xia, Yuqing, Chen, Feiyang, Jiang, Yuting, Hu, Yasen, Ni, Hao, Li, Binyang, Zhao, Guoshuai, Chiang, Jui-Hao, Guo, Zhongxin, Lin, Chen, Kuang, Kun, Li, Wenjie, Shen, Yelong, Jiao, Jian, Cheng, Peng, Yang, Mao
We introduce Sigma, an efficient large language model specialized for the system domain, empowered by a novel architecture including DiffQKV attention, and pre-trained on our meticulously collected system domain data. DiffQKV attention significantly enhances the inference efficiency of Sigma by optimizing the Query (Q), Key (K), and Value (V) components in the attention mechanism differentially, based on their varying impacts on the model performance and efficiency indicators. Specifically, we (1) conduct extensive experiments that demonstrate the model's varying sensitivity to the compression of K and V components, leading to the development of differentially compressed KV, and (2) propose augmented Q to expand the Q head dimension, which enhances the model's representation capacity with minimal impacts on the inference speed. Rigorous theoretical and empirical analyses reveal that DiffQKV attention significantly enhances efficiency, achieving up to a 33.36% improvement in inference speed over the conventional grouped-query attention (GQA) in long-context scenarios. We pre-train Sigma on 6T tokens from various sources, including 19.5B system domain data that we carefully collect and 1T tokens of synthesized and rewritten data. In general domains, Sigma achieves comparable performance to other state-of-arts models. In the system domain, we introduce the first comprehensive benchmark AIMicius, where Sigma demonstrates remarkable performance across all tasks, significantly outperforming GPT-4 with an absolute improvement up to 52.5%.
Stochastic Linear Bandits with Latent Heterogeneity
Chen, Elynn, Chen, Xi, Jing, Wenbo, Liu, Xiao
This paper addresses the critical challenge of latent heterogeneity in online decision-making, where individual responses to business actions vary due to unobserved characteristics. While existing approaches in data-driven decision-making have focused on observable heterogeneity through contextual features, they fall short when heterogeneity stems from unobservable factors such as lifestyle preferences and personal experiences. We propose a novel latent heterogeneous bandit framework that explicitly models this unobserved heterogeneity in customer responses, with promotion targeting as our primary example. Our methodology introduces an innovative algorithm that simultaneously learns latent group memberships and group-specific reward functions. Through theoretical analysis and empirical validation using data from a mobile commerce platform, we establish high-probability bounds for parameter estimation, convergence rates for group classification, and comprehensive regret bounds. Notably, our theoretical analysis reveals two distinct types of regret measures: a ``strong regret'' against an oracle with perfect knowledge of customer memberships, which remains non-sub-linear due to inherent classification uncertainty, and a ``regular regret'' against an oracle aware only of deterministic components, for which our algorithm achieves a sub-linear rate that is minimax optimal in horizon length and dimension. We further demonstrate that existing bandit algorithms ignoring latent heterogeneity incur constant average regret that accumulates linearly over time. Our framework provides practitioners with new tools for decision-making under latent heterogeneity and extends to various business applications, including personalized pricing, resource allocation, and inventory management.