Goto

Collaborating Authors

 Liu, Shuai


Distributed Stochastic Zeroth-Order Optimization with Compressed Communication

arXiv.org Artificial Intelligence

The dual challenges of prohibitive communication overhead and the impracticality of gradient computation due to data privacy or black-box constraints in distributed systems motivate this work on communication-constrained gradient-free optimization. We propose a stochastic distributed zeroth-order algorithm (Com-DSZO) requiring only two function evaluations per iteration, integrated with general compression operators. Rigorous analysis establishes its sublinear convergence rate for both smooth and nonsmooth objectives, while explicitly elucidating the compression-convergence trade-off. Furthermore, we develop a variance-reduced variant (VR-Com-DSZO) under stochastic mini-batch feedback. The empirical algorithm performance are illustrated with numerical examples.


nextlocllm: next location prediction using LLMs

arXiv.org Artificial Intelligence

Next location prediction is a critical task in human mobility analysis and serves as a foundation for various downstream applications. Existing methods typically rely on discrete IDs to represent locations, which inherently overlook spatial relationships and cannot generalize across cities. In this paper, we propose NextLocLLM, which leverages the advantages of large language models (LLMs) in processing natural language descriptions and their strong generalization capabilities for next location prediction. Specifically, instead of using IDs, NextLocLLM encodes locations based on continuous spatial coordinates to better model spatial relationships. These coordinates are further normalized to enable robust cross-city generalization. Another highlight of NextlocLLM is its LLM-enhanced POI embeddings. These embeddings are then integrated via nonlinear projections to form this LLM-enhanced POI embeddings, effectively capturing locations' functional attributes. Furthermore, task and data prompt prefix, together with trajectory embeddings, are incorporated as input for partly-frozen LLM backbone. NextLocLLM further introduces prediction retrieval module to ensure structural consistency in prediction. Experiments show that NextLocLLM outperforms existing models in next location prediction, excelling in both supervised and zero-shot settings. With the rapid advancement of smart city infrastructure and positioning techniques, the acquisition of human mobility trajectories has become increasingly widespread, offering unprecedented research opportunities (Yabe et al., 2024a). Accurately predicting a user's next location holds significant value across multiple key domains.


Almost Free: Self-concordance in Natural Exponential Families and an Application to Bandits

arXiv.org Machine Learning

We prove that single-parameter natural exponential families with subexponential tails are self-concordant with polynomial-sized parameters. For subgaussian natural exponential families we establish an exact characterization of the growth rate of the self-concordance parameter. Applying these findings to bandits allows us to fill gaps in the literature: We show that optimistic algorithms for generalized linear bandits enjoy regret bounds that are both second-order (scale with the variance of the optimal arm's reward distribution) and free of an exponential dependence on the bound of the problem parameter in the leading term. To the best of our knowledge, ours is the first regret bound for generalized linear bandits with subexponential tails, broadening the class of problems to include Poisson, exponential and gamma bandits.


Distributed Online Bandit Nonconvex Optimization with One-Point Residual Feedback via Dynamic Regret

arXiv.org Artificial Intelligence

This paper considers the distributed online bandit optimization problem with nonconvex loss functions over a time-varying digraph. This problem can be viewed as a repeated game between a group of online players and an adversary. At each round, each player selects a decision from the constraint set, and then the adversary assigns an arbitrary, possibly nonconvex, loss function to this player. Only the loss value at the current round, rather than the entire loss function or any other information (e.g. gradient), is privately revealed to the player. Players aim to minimize a sequence of global loss functions, which are the sum of local losses. We observe that traditional multi-point bandit algorithms are unsuitable for online optimization, where the data for the loss function are not all a priori, while the one-point bandit algorithms suffer from poor regret guarantees. To address these issues, we propose a novel one-point residual feedback distributed online algorithm. This algorithm estimates the gradient using residuals from two points, effectively reducing the regret bound while maintaining $\mathcal{O}(1)$ sampling complexity per iteration. We employ a rigorous metric, dynamic regret, to evaluate the algorithm's performance. By appropriately selecting the step size and smoothing parameters, we demonstrate that the expected dynamic regret of our algorithm is comparable to existing algorithms that use two-point feedback, provided the deviation in the objective function sequence and the path length of the minimization grows sublinearly. Finally, we validate the effectiveness of the proposed algorithm through numerical simulations.


LMMs-Eval: Reality Check on the Evaluation of Large Multimodal Models

arXiv.org Artificial Intelligence

The advances of large foundation models necessitate wide-coverage, low-cost, and zero-contamination benchmarks. Despite continuous exploration of language model evaluations, comprehensive studies on the evaluation of Large Multi-modal Models (LMMs) remain limited. In this work, we introduce LMMS-EVAL, a unified and standardized multimodal benchmark framework with over 50 tasks and more than 10 models to promote transparent and reproducible evaluations. Although LMMS-EVAL offers comprehensive coverage, we find it still falls short in achieving low cost and zero contamination. To approach this evaluation trilemma, we further introduce LMMS-EVAL LITE, a pruned evaluation toolkit that emphasizes both coverage and efficiency. Additionally, we present Multimodal LIVEBENCH that utilizes continuously updating news and online forums to assess models' generalization abilities in the wild, featuring a low-cost and zero-contamination evaluation approach. In summary, our work highlights the importance of considering the evaluation trilemma and provides practical solutions to navigate the trade-offs in evaluating large multi-modal models, paving the way for more effective and reliable benchmarking of LMMs. We opensource our codebase and maintain leaderboard of LIVEBENCH at https://github.com/EvolvingLMMs-Lab/lmms-eval and https://huggingface.co/spaces/lmms-lab/LiveBench.


SAGDFN: A Scalable Adaptive Graph Diffusion Forecasting Network for Multivariate Time Series Forecasting

arXiv.org Artificial Intelligence

Time series forecasting is essential for our daily activities and precise modeling of the complex correlations and shared patterns among multiple time series is essential for improving forecasting performance. Spatial-Temporal Graph Neural Networks (STGNNs) are widely used in multivariate time series forecasting tasks and have achieved promising performance on multiple real-world datasets for their ability to model the underlying complex spatial and temporal dependencies. However, existing studies have mainly focused on datasets comprising only a few hundred sensors due to the heavy computational cost and memory cost of spatial-temporal GNNs. When applied to larger datasets, these methods fail to capture the underlying complex spatial dependencies and exhibit limited scalability and performance. To this end, we present a Scalable Adaptive Graph Diffusion Forecasting Network (SAGDFN) to capture complex spatial-temporal correlation for large-scale multivariate time series and thereby, leading to exceptional performance in multivariate time series forecasting tasks. The proposed SAGDFN is scalable to datasets of thousands of nodes without the need of prior knowledge of spatial correlation. Extensive experiments demonstrate that SAGDFN achieves comparable performance with state-of-the-art baselines on one real-world dataset of 207 nodes and outperforms all state-of-the-art baselines by a significant margin on three real-world datasets of 2000 nodes.


UrbanLLM: Autonomous Urban Activity Planning and Management with Large Language Models

arXiv.org Artificial Intelligence

Location-based services play an critical role in improving the quality of our daily lives. Despite the proliferation of numerous specialized AI models within spatio-temporal context of location-based services, these models struggle to autonomously tackle problems regarding complex urban planing and management. To bridge this gap, we introduce UrbanLLM, a fine-tuned large language model (LLM) designed to tackle diverse problems in urban scenarios. UrbanLLM functions as a problem-solver by decomposing urban-related queries into manageable sub-tasks, identifying suitable spatio-temporal AI models for each sub-task, and generating comprehensive responses to the given queries. Our experimental results indicate that UrbanLLM significantly outperforms other established LLMs, such as Llama and the GPT series, in handling problems concerning complex urban activity planning and management. UrbanLLM exhibits considerable potential in enhancing the effectiveness of solving problems in urban scenarios, reducing the workload and reliance for human experts.


Style Transfer with Multi-iteration Preference Optimization

arXiv.org Artificial Intelligence

Numerous recent techniques for text style transfer characterize their approaches as variants of reinforcement learning and preference optimization. In this work, we consider the relationship between these approaches and a class of optimization approaches developed primarily for (non-neural) statistical machine translation, formerly known as 'tuning'. Inspired by these techniques from the past, we improve upon established preference optimization approaches, incorporating multiple iterations of exploration and optimization, and choosing contrastive examples by following a 'hope' vs 'fear' sampling strategy. Cognizant of the difference between machine translation and style transfer, however, we further tailor our framework with a new pseudo-parallel generation method and a dynamic weighted reward aggregation method to tackle the lack of parallel data and the need for a multi-objective reward. We evaluate our model on two commonly used text style transfer datasets. Through automatic and human evaluation results we show the effectiveness and the superiority of our model compared to state-of-the-art baselines.


4D Panoptic Scene Graph Generation

arXiv.org Artificial Intelligence

We are living in a three-dimensional space while moving forward through a fourth dimension: time. To allow artificial intelligence to develop a comprehensive understanding of such a 4D environment, we introduce 4D Panoptic Scene Graph (PSG-4D), a new representation that bridges the raw visual data perceived in a dynamic 4D world and high-level visual understanding. Specifically, PSG-4D abstracts rich 4D sensory data into nodes, which represent entities with precise location and status information, and edges, which capture the temporal relations. To facilitate research in this new area, we build a richly annotated PSG-4D dataset consisting of 3K RGB-D videos with a total of 1M frames, each of which is labeled with 4D panoptic segmentation masks as well as fine-grained, dynamic scene graphs. To solve PSG-4D, we propose PSG4DFormer, a Transformer-based model that can predict panoptic segmentation masks, track masks along the time axis, and generate the corresponding scene graphs via a relation component. Extensive experiments on the new dataset show that our method can serve as a strong baseline for future research on PSG-4D. In the end, we provide a real-world application example to demonstrate how we can achieve dynamic scene understanding by integrating a large language model into our PSG-4D system.


TPLLM: A Traffic Prediction Framework Based on Pretrained Large Language Models

arXiv.org Artificial Intelligence

Traffic prediction constitutes a pivotal facet within the purview of Intelligent Transportation Systems (ITS), and the attainment of highly precise predictions holds profound significance for efficacious traffic management. The precision of prevailing deep learning-driven traffic prediction models typically sees an upward trend with a rise in the volume of training data. However, the procurement of comprehensive spatiotemporal datasets for traffic is often fraught with challenges, primarily stemming from the substantial costs associated with data collection and retention. Consequently, developing a model that can achieve accurate predictions and good generalization ability in areas with limited historical traffic data is a challenging problem. It is noteworthy that the rapidly advancing pretrained Large Language Models (LLMs) of recent years have demonstrated exceptional proficiency in cross-modality knowledge transfer and few-shot learning. Recognizing the sequential nature of traffic data, similar to language, we introduce TPLLM, a novel traffic prediction framework leveraging LLMs. In this framework, we construct a sequence embedding layer based on Convolutional Neural Networks (CNNs) and a graph embedding layer based on Graph Convolutional Networks (GCNs) to extract sequence features and spatial features, respectively. These are subsequently integrated to form inputs that are suitable for LLMs. A Low-Rank Adaptation (LoRA) fine-tuning approach is applied to TPLLM, thereby facilitating efficient learning and minimizing computational demands. Experiments on two real-world datasets demonstrate that TPLLM exhibits commendable performance in both full-sample and few-shot prediction scenarios, effectively supporting the development of ITS in regions with scarce historical traffic data.