Lim, Wei Yang Bryan
AutoHete: An Automatic and Efficient Heterogeneous Training System for LLMs
Zeng, Zihao, Liu, Chubo, He, Xin, Hu, Juan, Jiang, Yong, Huang, Fei, Li, Kenli, Lim, Wei Yang Bryan
Transformer-based large language models (LLMs) have demonstrated exceptional capabilities in sequence modeling and text generation, with improvements scaling proportionally with model size. However, the limitations of GPU memory have restricted LLM training accessibility for many researchers. Existing heterogeneous training methods significantly expand the scale of trainable models but introduce substantial communication overheads and CPU workloads. In this work, we propose AutoHete, an automatic and efficient heterogeneous training system compatible with both single-GPU and multi-GPU environments. AutoHete dynamically adjusts activation checkpointing, parameter offloading, and optimizer offloading based on the specific hardware configuration and LLM training needs. Additionally, we design a priority-based scheduling mechanism that maximizes the overlap between operations across training iterations, enhancing throughput. Compared to state-of-the-art heterogeneous training systems, AutoHete delivers a 1.32x~1.91x throughput improvement across various model sizes and training configurations.
Unlearning through Knowledge Overwriting: Reversible Federated Unlearning via Selective Sparse Adapter
Zhong, Zhengyi, Bao, Weidong, Wang, Ji, Zhang, Shuai, Zhou, Jingxuan, Lyu, Lingjuan, Lim, Wei Yang Bryan
Federated Learning is a promising paradigm for privacy-preserving collaborative model training. In practice, it is essential not only to continuously train the model to acquire new knowledge but also to guarantee old knowledge the right to be forgotten (i.e., federated unlearning), especially for privacy-sensitive information or harmful knowledge. However, current federated unlearning methods face several challenges, including indiscriminate unlearning of cross-client knowledge, irreversibility of unlearning, and significant unlearning costs. T o this end, we propose a method named FUSED, which first identifies critical layers by analyzing each layer's sensitivity to knowledge and constructs sparse unlearning adapters for sensitive ones. Then, the adapters are trained without altering the original parameters, overwriting the unlearning knowledge with the remaining knowledge. This knowledge overwriting process enables FUSED to mitigate the effects of indiscriminate unlearning. Moreover, the introduction of independent adapters makes unlearning reversible and significantly reduces the unlearning costs. Finally, extensive experiments on three datasets across various unlearning scenarios demonstrate that FUSED's effectiveness is comparable to Retraining, surpassing all other baselines while greatly reducing unlearning costs.
STORM: A Spatio-Temporal Factor Model Based on Dual Vector Quantized Variational Autoencoders for Financial Trading
Zhao, Yilei, Zhang, Wentao, Yang, Tingran, Jiang, Yong, Huang, Fei, Lim, Wei Yang Bryan
In financial trading, factor models are widely used to price assets and capture excess returns from mispricing. Recently, we have witnessed the rise of variational autoencoder-based latent factor models, which learn latent factors self-adaptively. While these models focus on modeling overall market conditions, they often fail to effectively capture the temporal patterns of individual stocks. Additionally, representing multiple factors as single values simplifies the model but limits its ability to capture complex relationships and dependencies. As a result, the learned factors are of low quality and lack diversity, reducing their effectiveness and robustness across different trading periods. To address these issues, we propose a Spatio-Temporal factOR Model based on dual vector quantized variational autoencoders, named STORM, which extracts features of stocks from temporal and spatial perspectives, then fuses and aligns these features at the fine-grained and semantic level, and represents the factors as multi-dimensional embeddings. The discrete codebooks cluster similar factor embeddings, ensuring orthogonality and diversity, which helps distinguish between different factors and enables factor selection in financial trading. To show the performance of the proposed factor model, we apply it to two downstream experiments: portfolio management on two stock datasets and individual trading tasks on six specific stocks. The extensive experiments demonstrate STORM's flexibility in adapting to downstream tasks and superior performance over baseline models.
Enhancing Federated Domain Adaptation with Multi-Domain Prototype-Based Federated Fine-Tuning
Zhang, Jingyuan, Duan, Yiyang, Niu, Shuaicheng, Cao, Yang, Lim, Wei Yang Bryan
Federated Domain Adaptation (FDA) is a Federated Learning (FL) scenario where models are trained across multiple clients with unique data domains but a shared category space, without transmitting private data. The primary challenge in FDA is data heterogeneity, which causes significant divergences in gradient updates when using conventional averaging-based aggregation methods, reducing the efficacy of the global model. This further undermines both in-domain and out-of-domain performance (within the same federated system but outside the local client). To address this, we propose a novel framework called \textbf{M}ulti-domain \textbf{P}rototype-based \textbf{F}ederated Fine-\textbf{T}uning (MPFT). MPFT fine-tunes a pre-trained model using multi-domain prototypes, i.e., pretrained representations enriched with domain-specific information from category-specific local data. This enables supervised learning on the server to derive a globally optimized adapter that is subsequently distributed to local clients, without the intrusion of data privacy. Empirical results show that MPFT significantly improves both in-domain and out-of-domain accuracy over conventional methods, enhancing knowledge preservation and adaptation in FDA. Notably, MPFT achieves convergence within a single communication round, greatly reducing computation and communication costs. To ensure privacy, MPFT applies differential privacy to protect the prototypes. Additionally, we develop a prototype-based feature space hijacking attack to evaluate robustness, confirming that raw data samples remain unrecoverable even after extensive training epochs. The complete implementation of MPFL is available at \url{https://anonymous.4open.science/r/DomainFL/}.
Enhancing Security and Privacy in Federated Learning using Update Digests and Voting-Based Defense
Li, Wenjie, Fan, Kai, Zhang, Jingyuan, Li, Hui, Lim, Wei Yang Bryan, Yang, Qiang
Federated Learning (FL) is a promising privacy-preserving machine learning paradigm that allows data owners to collaboratively train models while keeping their data localized. Despite its potential, FL faces challenges related to the trustworthiness of both clients and servers, especially in the presence of curious or malicious adversaries. In this paper, we introduce a novel framework named \underline{\textbf{F}}ederated \underline{\textbf{L}}earning with \underline{\textbf{U}}pdate \underline{\textbf{D}}igest (FLUD), which addresses the critical issues of privacy preservation and resistance to Byzantine attacks within distributed learning environments. FLUD utilizes an innovative approach, the $\mathsf{LinfSample}$ method, allowing clients to compute the $l_{\infty}$ norm across sliding windows of updates as an update digest. This digest enables the server to calculate a shared distance matrix, significantly reducing the overhead associated with Secure Multi-Party Computation (SMPC) by three orders of magnitude while effectively distinguishing between benign and malicious updates. Additionally, FLUD integrates a privacy-preserving, voting-based defense mechanism that employs optimized SMPC protocols to minimize communication rounds. Our comprehensive experiments demonstrate FLUD's effectiveness in countering Byzantine adversaries while incurring low communication and runtime overhead. FLUD offers a scalable framework for secure and reliable FL in distributed environments, facilitating its application in scenarios requiring robust data management and security.
Sustainable AIGC Workload Scheduling of Geo-Distributed Data Centers: A Multi-Agent Reinforcement Learning Approach
Zhang, Siyue, Xu, Minrui, Lim, Wei Yang Bryan, Niyato, Dusit
Recent breakthroughs in generative artificial intelligence have triggered a surge in demand for machine learning training, which poses significant cost burdens and environmental challenges due to its substantial energy consumption. Scheduling training jobs among geographically distributed cloud data centers unveils the opportunity to optimize the usage of computing capacity powered by inexpensive and low-carbon energy and address the issue of workload imbalance. To tackle the challenge of multi-objective scheduling, i.e., maximizing GPU utilization while reducing operational costs, we propose an algorithm based on multi-agent reinforcement learning and actor-critic methods to learn the optimal collaborative scheduling strategy through interacting with a cloud system built with real-life workload patterns, energy prices, and carbon intensities. Compared with other algorithms, our proposed method improves the system utility by up to 28.6% attributable to higher GPU utilization, lower energy cost, and less carbon emission.