Goto

Collaborating Authors

 Light, Jonathan


DISC: Dynamic Decomposition Improves LLM Inference Scaling

arXiv.org Artificial Intelligence

Many inference scaling methods work by breaking a problem into smaller steps (or groups of tokens), then sampling and choosing the best next step. However, these steps and their sizes are usually predetermined based on human intuition or domain knowledge. This paper introduces dynamic decomposition, a method that automatically and adaptively splits solution and reasoning traces into steps during inference. This approach improves computational efficiency by focusing more resources on difficult steps, breaking them down further and prioritizing their sampling. Experiments on coding and math benchmarks (APPS, MATH, and LiveCodeBench) show that dynamic decomposition performs better than static methods, which rely on fixed steps like token-level, sentence-level, or single-step decompositions. These results suggest that dynamic decomposition can enhance many inference scaling techniques.


Diversified Sampling Improves Scaling LLM inference

arXiv.org Artificial Intelligence

While increasing training compute has significantly improved the performance of large language models (LLMs), similar gains have not been observed when scaling inference compute. We hypothesize that the primary issue lies in the uniformity of LLM outputs, which leads to inefficient sampling as models repeatedly generate similar but inaccurate responses. Motivated by an intriguing relationship between solution accuracy (Pass@10) and response diversity, we propose DivSampling-a novel and versatile sampling technique designed to enhance the diversity of candidate solutions by introducing prompt perturbations.DivSampling incorporates two categories of perturbations: task-agnostic approaches, which are general and not tailored to any specific task, and task-specific approaches, which are customized based on task content. Our theoretical analysis demonstrates that, under mild assumptions, the error rates of responses generated from diverse prompts are significantly lower compared to those produced by stationary prompts. Comprehensive evaluations across various tasks -including reasoning, mathematics, and code generation - highlight the effectiveness of DivSampling in improving solution accuracy. This scalable and efficient approach offers a new perspective on optimizing test-time inference, addressing limitations in current sampling strategies.


Unifying and Optimizing Data Values for Selection via Sequential-Decision-Making

arXiv.org Artificial Intelligence

Data selection has emerged as a crucial downstream application of data valuation. While existing data valuation methods have shown promise in selection tasks, the theoretical foundations and full potential of using data values for selection remain largely unexplored. In this work, we first demonstrate that data values applied for selection can be naturally reformulated as a sequential-decision-making problem, where the optimal data value can be derived through dynamic programming. We show this framework unifies and reinterprets existing methods like Data Shapley through the lens of approximate dynamic programming, specifically as myopic reward function approximations to this sequential problem. Furthermore, we analyze how sequential data selection optimality is affected when the ground-truth utility function exhibits monotonic submodularity with curvature. To address the computational challenges in obtaining optimal data values, we propose an efficient approximation scheme using learned bipartite graphs as surrogate utility models, ensuring greedy selection is still optimal when the surrogate utility is correctly specified and learned. Extensive experiments demonstrate the effectiveness of our approach across diverse datasets.


PIANIST: Learning Partially Observable World Models with LLMs for Multi-Agent Decision Making

arXiv.org Artificial Intelligence

Effective extraction of the world knowledge in LLMs for complex decision-making tasks remains a challenge. We propose a framework PIANIST for decomposing the world model into seven intuitive components conducive to zero-shot LLM generation. Given only the natural language description of the game and how input observations are formatted, our method can generate a working world model for fast and efficient MCTS simulation. We show that our method works well on two different games that challenge the planning and decision making skills of the agent for both language and non-language based action taking, without any training on domain-specific training data or explicitly defined world model.


Scattered Forest Search: Smarter Code Space Exploration with LLMs

arXiv.org Artificial Intelligence

We propose a novel approach to scaling LLM inference for code generation. We frame code generation as a black box optimization problem within the code space, and employ optimization-inspired techniques to enhance exploration. Specifically, we introduce Scattered Forest Search to enhance solution diversity while searching for solutions. Our theoretical analysis illustrates how these methods avoid local optima during optimization. Extensive experiments on HumanEval, MBPP, APPS, CodeContests, and Leetcode reveal significant performance improvements. For instance, our method achieves a pass@1 rate of 67.1% on HumanEval+ and 87.2% on HumanEval with GPT-3.5, marking improvements of 8.6% and 4.3% over the state-of-the-art, while also halving the iterations needed to find the correct solution. Furthermore, our method scales more efficiently than existing search techniques, including tree search, line search, and repeated sampling.


AvalonBench: Evaluating LLMs Playing the Game of Avalon

arXiv.org Artificial Intelligence

In this paper, we explore the potential of Large Language Models (LLMs) Agents in playing the strategic social deduction game, Resistance Avalon. Players in Avalon are challenged not only to make informed decisions based on dynamically evolving game phases, but also to engage in discussions where they must deceive, deduce, and negotiate with other players. These characteristics make Avalon a compelling test-bed to study the decision-making and language-processing capabilities of LLM Agents. To facilitate research in this line, we introduce AvalonBench - a comprehensive game environment tailored for evaluating multi-agent LLM Agents. This benchmark incorporates: (1) a game environment for Avalon, (2) rule-based bots as baseline opponents, and (3) ReAct-style LLM agents with tailored prompts for each role. Notably, our evaluations based on AvalonBench highlight a clear capability gap. For instance, models like ChatGPT playing good-role got a win rate of 22.2% against rule-based bots playing evil, while good-role bot achieves 38.2% win rate in the same setting. We envision AvalonBench could be a good test-bed for developing more advanced LLMs (with self-playing) and agent frameworks that can effectively model the layered complexities of such game environments.


A Data-Centric Online Market for Machine Learning: From Discovery to Pricing

arXiv.org Artificial Intelligence

Data fuels machine learning (ML) - rich and high-quality training data is essential to the success of ML. However, to transform ML from the race among a few large corporations to an accessible technology that serves numerous normal users' data analysis requests, there still exist important challenges. One gap we observed is that many ML users can benefit from new data that other data owners possess, whereas these data owners sit on piles of data without knowing who can benefit from it. This gap creates the opportunity for building an online market that can automatically connect supply with demand. While online matching markets are prevalent (e.g., ride-hailing systems), designing a data-centric market for ML exhibits many unprecedented challenges. This paper develops new techniques to tackle two core challenges in designing such a market: (a) to efficiently match demand with supply, we design an algorithm to automatically discover useful data for any ML task from a pool of thousands of datasets, achieving high-quality matching between ML models and data; (b) to encourage market participation of ML users without much ML expertise, we design a new pricing mechanism for selling data-augmented ML models. Furthermore, our market is designed to be API-compatible with existing online ML markets like Vertex AI and Sagemaker, making it easy to use while providing better results due to joint data and model search. We envision that the synergy of our data and model discovery algorithm and pricing mechanism will be an important step towards building a new data-centric online market that serves ML users effectively.