Li, Zhenguo
Implicit Search via Discrete Diffusion: A Study on Chess
Ye, Jiacheng, Wu, Zhenyu, Gao, Jiahui, Wu, Zhiyong, Jiang, Xin, Li, Zhenguo, Kong, Lingpeng
In the post-AlphaGo era, there has been a renewed interest in search techniques such as Monte Carlo Tree Search (MCTS), particularly in their application to Large Language Models (LLMs). This renewed attention is driven by the recognition that current next-token prediction models often lack the ability for long-term planning. Is it possible to instill search-like abilities within the models to enhance their planning abilities without relying on explicit search? We propose DiffuSearch , a model that does \textit{implicit search} by looking into the future world via discrete diffusion modeling. We instantiate DiffuSearch on a classical board game, Chess, where explicit search is known to be essential. Through extensive controlled experiments, we show DiffuSearch outperforms both the searchless and explicit search-enhanced policies. Specifically, DiffuSearch outperforms the one-step policy by 19.2% and the MCTS-enhanced policy by 14% on action accuracy. Furthermore, DiffuSearch demonstrates a notable 30% enhancement in puzzle-solving abilities compared to explicit search-based policies, along with a significant 540 Elo increase in game-playing strength assessment. These results indicate that implicit search via discrete diffusion is a viable alternative to explicit search over a one-step policy. All codes are publicly available at \href{https://github.com/HKUNLP/DiffuSearch}{https://github.com/HKUNLP/DiffuSearch}.
Self-Adjust Softmax
Zheng, Chuanyang, Gao, Yihang, Chen, Guoxuan, Shi, Han, Xiong, Jing, Ren, Xiaozhe, Huang, Chao, Jiang, Xin, Li, Zhenguo, Li, Yu
The softmax function is crucial in Transformer attention, which normalizes each row of the attention scores with summation to one, achieving superior performances over other alternative functions. However, the softmax function can face a gradient vanishing issue when some elements of the attention scores approach extreme values, such as probabilities close to one or zero. In this paper, we propose Self-Adjust Softmax (SA-Softmax) to address this issue by modifying $softmax(x)$ to $x \cdot softmax(x)$ and its normalized variant $\frac{(x - min(x_{\min},0))}{max(0,x_{max})-min(x_{min},0)} \cdot softmax(x)$. We theoretically show that SA-Softmax provides enhanced gradient properties compared to the vanilla softmax function. Moreover, SA-Softmax Attention can be seamlessly integrated into existing Transformer models to their attention mechanisms with minor adjustments. We conducted experiments to evaluate the empirical performance of Transformer models using SA-Softmax compared to the vanilla softmax function. These experiments, involving models with up to 2.7 billion parameters, are conducted across diverse datasets, language tasks, and positional encoding methods.
Improved Diffusion-based Generative Model with Better Adversarial Robustness
Wang, Zekun, Yi, Mingyang, Xue, Shuchen, Li, Zhenguo, Liu, Ming, Qin, Bing, Ma, Zhi-Ming
Diffusion Probabilistic Models (DPMs) have achieved significant success in generative tasks. However, their training and sampling processes suffer from the issue of distribution mismatch. During the denoising process, the input data distributions differ between the training and inference stages, potentially leading to inaccurate data generation. To obviate this, we analyze the training objective of DPMs and theoretically demonstrate that this mismatch can be alleviated through Distributionally Robust Optimization (DRO), which is equivalent to performing robustness-driven Adversarial Training (AT) on DPMs. Furthermore, for the recently proposed Consistency Model (CM), which distills the inference process of the DPM, we prove that its training objective also encounters the mismatch issue. Fortunately, this issue can be mitigated by AT as well. Based on these insights, we propose to conduct efficient AT on both DPM and CM. Finally, extensive empirical studies validate the effectiveness of AT in diffusion-based models. The code is available at https://github.com/kugwzk/AT_Diff.
How Do LLMs Acquire New Knowledge? A Knowledge Circuits Perspective on Continual Pre-Training
Ou, Yixin, Yao, Yunzhi, Zhang, Ningyu, Jin, Hui, Sun, Jiacheng, Deng, Shumin, Li, Zhenguo, Chen, Huajun
Despite exceptional capabilities in knowledge-intensive tasks, Large Language Models (LLMs) face a critical gap in understanding how they internalize new knowledge, particularly how to structurally embed acquired knowledge in their neural computations. We address this issue through the lens of knowledge circuit evolution, identifying computational subgraphs that facilitate knowledge storage and processing. Our systematic analysis of circuit evolution throughout continual pre-training reveals several key findings: (1) the acquisition of new knowledge is influenced by its relevance to pre-existing knowledge; (2) the evolution of knowledge circuits exhibits a distinct phase shift from formation to optimization; (3) the evolution of knowledge circuits follows a deep-to-shallow pattern. These insights not only advance our theoretical understanding of the mechanisms of new knowledge acquisition in LLMs, but also provide potential implications for improving continual pre-training strategies to enhance model performance. Code and data will be available at https://github.com/zjunlp/DynamicKnowledgeCircuits.
Getting More Juice Out of Your Data: Hard Pair Refinement Enhances Visual-Language Models Without Extra Data
Wang, Haonan, Huang, Minbin, Huang, Runhui, Hong, Lanqing, Xu, Hang, Hu, Tianyang, Liang, Xiaodan, Li, Zhenguo, Cheng, Hong, Kawaguchi, Kenji
Contrastive Language-Image Pre-training (CLIP) has become the standard for cross-modal image-text representation learning. Improving CLIP typically requires additional data and retraining with new loss functions, but these demands raise resource and time costs, limiting practical use. In this work, we introduce HELIP, a cost-effective strategy that improves CLIP models by exploiting challenging text-image pairs within existing datasets in continuous training. This eliminates the need for additional data or extensive retraining. Moreover, HELIP integrates effortlessly into current training pipelines with minimal code modifications, allowing for quick and seamless implementation. On comprehensive benchmarks, HELIP consistently boosts existing models. In particular, within just two epochs of training, it improves zero-shot classification accuracy on ImageNet for SLIP models pre-trained on CC3M, CC12M, and YFCC15M datasets by 3.05%, 4.47%, and 10.1% , respectively. In addition, on fine-grained classification datasets, HELIP improves the zero-shot performance of CLIP and SLIP by an average of 8.4% and 18.6%, and their linear probe performance by an average of 9.5% and 3.0%. The code is publicly available at: https://github.com/haonan3/HELIP-NACCL-2025.git.
Efficient Neural Theorem Proving via Fine-grained Proof Structure Analysis
Liu, Haoxiong, Sun, Jiacheng, Li, Zhenguo, Yao, Andrew C
The synergy between deep learning models and traditional automation tools plays a pivotal role in developing robust neural theorem provers (NTPs). However, for proof synthesis with LLMs, previous work applies automation tools either only when the model explicitly calls the method, or only at a single granularity level, failing to fully exploit the power of built-in tactics and off-the-shelf automated theorem provers. In this work, we propose ProofAug, a novel theorem proving method that enjoys superior sample efficiency through equipping proof-generation LLMs with automation methods in different granularities via fine-grained structure analysis of model-generated proof proposals. Furthermore, ProofAug serves as a versatile plug-and-play module that seamlessly integrates with any tree-search algorithm, enabling our construction of an efficient recursive proving (ERP) module to further enhance performance. The superiority of our method is validated on the miniF2F-test benchmark using the open-source deepseek-math-7b-base model and the Isabelle proof assistant. Notably, by additionally employing a mixed prompting strategy, we achieve a cumulative pass rate of 66.0% after curation of the dataset (61.9% for the original version), setting a new SOTA across all proof languages with a total sample budget of only 2100. Our code is available at https://github.com/haoxiongliu/ProofAug.
SepLLM: Accelerate Large Language Models by Compressing One Segment into One Separator
Chen, Guoxuan, Shi, Han, Li, Jiawei, Gao, Yihang, Ren, Xiaozhe, Chen, Yimeng, Jiang, Xin, Li, Zhenguo, Liu, Weiyang, Huang, Chao
Large Language Models (LLMs) have exhibited exceptional performance across a spectrum of natural language processing tasks. However, their substantial sizes pose considerable challenges, particularly in computational demands and inference speed, due to their quadratic complexity. In this work, we have identified a key pattern: certain seemingly meaningless special tokens (i.e., separators) contribute disproportionately to attention scores compared to semantically meaningful tokens. This observation suggests that information of the segments between these separator tokens can be effectively condensed into the separator tokens themselves without significant information loss. Guided by this insight, we introduce SepLLM, a plug-and-play framework that accelerates inference by compressing these segments and eliminating redundant tokens. Additionally, we implement efficient kernels for training acceleration. Experimental results across training-free, training-from-scratch, and post-training settings demonstrate SepLLM's effectiveness. Notably, using the Llama-3-8B backbone, SepLLM achieves over 50% reduction in KV cache on the GSM8K-CoT benchmark while maintaining comparable performance. Furthermore, in streaming settings, SepLLM effectively processes sequences of up to 4 million tokens or more while maintaining consistent language modeling capabilities.
Dual Risk Minimization: Towards Next-Level Robustness in Fine-tuning Zero-Shot Models
Li, Kaican, Xie, Weiyan, Huang, Yongxiang, Deng, Didan, Hong, Lanqing, Li, Zhenguo, Silva, Ricardo, Zhang, Nevin L.
Fine-tuning foundation models often compromises their robustness to distribution shifts. To remedy this, most robust fine-tuning methods aim to preserve the pre-trained features. However, not all pre-trained features are robust and those methods are largely indifferent to which ones to preserve. We propose dual risk minimization (DRM), which combines empirical risk minimization with worst-case risk minimization, to better preserve the core features of downstream tasks. In particular, we utilize core-feature descriptions generated by LLMs to induce core-based zero-shot predictions which then serve as proxies to estimate the worst-case risk. DRM balances two crucial aspects of model robustness: expected performance and worst-case performance, establishing a new state of the art on various real-world benchmarks. DRM significantly improves the out-of-distribution performance of CLIP ViT-L/14@336 on ImageNet (75.9 to 77.1), WILDS-iWildCam (47.1 to 51.8), and WILDS-FMoW (50.7 to 53.1); opening up new avenues for robust fine-tuning. Our code is available at https://github.com/vaynexie/DRM .
EMOVA: Empowering Language Models to See, Hear and Speak with Vivid Emotions
Chen, Kai, Gou, Yunhao, Huang, Runhui, Liu, Zhili, Tan, Daxin, Xu, Jing, Wang, Chunwei, Zhu, Yi, Zeng, Yihan, Yang, Kuo, Wang, Dingdong, Xiang, Kun, Li, Haoyuan, Bai, Haoli, Han, Jianhua, Li, Xiaohui, Jin, Weike, Xie, Nian, Zhang, Yu, Kwok, James T., Zhao, Hengshuang, Liang, Xiaodan, Yeung, Dit-Yan, Chen, Xiao, Li, Zhenguo, Zhang, Wei, Liu, Qun, Yao, Jun, Hong, Lanqing, Hou, Lu, Xu, Hang
GPT-4o, an omni-modal model that enables vocal conversations with diverse emotions and tones, marks a milestone for omni-modal foundation models. However, empowering Large Language Models to perceive and generate images, texts, and speeches end-to-end with publicly available data remains challenging in the open-source community. Existing vision-language models rely on external tools for the speech processing, while speech-language models still suffer from limited or even without vision-understanding abilities. To address this gap, we propose EMOVA (EMotionally Omni-present Voice Assistant), to enable Large Language Models with end-to-end speech capabilities while maintaining the leading vision-language performance. With a semantic-acoustic disentangled speech tokenizer, we notice surprisingly that omni-modal alignment can further enhance vision-language and speech abilities compared with the corresponding bi-modal aligned counterparts. Moreover, a lightweight style module is proposed for flexible speech style controls (e.g., emotions and pitches). For the first time, EMOVA achieves state-of-the-art performance on both the vision-language and speech benchmarks, and meanwhile, supporting omni-modal spoken dialogue with vivid emotions.
Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration
Li, Qintong, Gao, Jiahui, Wang, Sheng, Pi, Renjie, Zhao, Xueliang, Wu, Chuan, Jiang, Xin, Li, Zhenguo, Kong, Lingpeng
Large language models (LLMs) have significantly benefited from training on diverse, high-quality task-specific data, leading to impressive performance across a range of downstream applications. Current methods often rely on human-annotated data or predefined task templates to direct powerful LLMs in synthesizing task-relevant data for effective model training. However, this dependence on manually designed components may constrain the scope of generated data, potentially overlooking critical edge cases or novel scenarios that could challenge the model. In this paper, we present a novel approach, ReverseGen, designed to automatically generate effective training samples that expose the weaknesses of LLMs. Specifically, we introduce a dedicated proposer trained to produce queries that lead target models to generate unsatisfactory responses. These failure-inducing queries are then used to construct training data, helping to address the models' shortcomings and improve overall performance. Our approach is flexible and can be applied to models of various scales (3B, 7B, and 8B). We evaluate ReverseGen on three key applications (safety, honesty, and math), demonstrating that our generated data is both highly effective and diverse. Models fine-tuned with ReverseGen-generated data consistently outperform those trained on human-annotated or general model-generated data, offering a new perspective on data synthesis for task-specific LLM enhancement.