Li, Yuhao
DriveLMM-o1: A Step-by-Step Reasoning Dataset and Large Multimodal Model for Driving Scenario Understanding
Ishaq, Ayesha, Lahoud, Jean, More, Ketan, Thawakar, Omkar, Thawkar, Ritesh, Dissanayake, Dinura, Ahsan, Noor, Li, Yuhao, Khan, Fahad Shahbaz, Cholakkal, Hisham, Laptev, Ivan, Anwer, Rao Muhammad, Khan, Salman
While large multimodal models (LMMs) have demonstrated strong performance across various Visual Question Answering (VQA) tasks, certain challenges require complex multi-step reasoning to reach accurate answers. One particularly challenging task is autonomous driving, which demands thorough cognitive processing before decisions can be made. In this domain, a sequential and interpretive understanding of visual cues is essential for effective perception, prediction, and planning. Nevertheless, common VQA benchmarks often focus on the accuracy of the final answer while overlooking the reasoning process that enables the generation of accurate responses. Moreover, existing methods lack a comprehensive framework for evaluating step-by-step reasoning in realistic driving scenarios. To address this gap, we propose DriveLMM-o1, a new dataset and benchmark specifically designed to advance step-wise visual reasoning for autonomous driving. Our benchmark features over 18k VQA examples in the training set and more than 4k in the test set, covering diverse questions on perception, prediction, and planning, each enriched with step-by-step reasoning to ensure logical inference in autonomous driving scenarios. We further introduce a large multimodal model that is fine-tuned on our reasoning dataset, demonstrating robust performance in complex driving scenarios. In addition, we benchmark various open-source and closed-source methods on our proposed dataset, systematically comparing their reasoning capabilities for autonomous driving tasks. Our model achieves a +7.49% gain in final answer accuracy, along with a 3.62% improvement in reasoning score over the previous best open-source model. Our framework, dataset, and model are available at https://github.com/ayesha-ishaq/DriveLMM-o1.
MiniMax-01: Scaling Foundation Models with Lightning Attention
MiniMax, null, Li, Aonian, Gong, Bangwei, Yang, Bo, Shan, Boji, Liu, Chang, Zhu, Cheng, Zhang, Chunhao, Guo, Congchao, Chen, Da, Li, Dong, Jiao, Enwei, Li, Gengxin, Zhang, Guojun, Sun, Haohai, Dong, Houze, Zhu, Jiadai, Zhuang, Jiaqi, Song, Jiayuan, Zhu, Jin, Han, Jingtao, Li, Jingyang, Xie, Junbin, Xu, Junhao, Yan, Junjie, Zhang, Kaishun, Xiao, Kecheng, Kang, Kexi, Han, Le, Wang, Leyang, Yu, Lianfei, Feng, Liheng, Zheng, Lin, Chai, Linbo, Xing, Long, Ju, Meizhi, Chi, Mingyuan, Zhang, Mozhi, Huang, Peikai, Niu, Pengcheng, Li, Pengfei, Zhao, Pengyu, Yang, Qi, Xu, Qidi, Wang, Qiexiang, Wang, Qin, Li, Qiuhui, Leng, Ruitao, Shi, Shengmin, Yu, Shuqi, Li, Sichen, Zhu, Songquan, Huang, Tao, Liang, Tianrun, Sun, Weigao, Sun, Weixuan, Cheng, Weiyu, Li, Wenkai, Song, Xiangjun, Su, Xiao, Han, Xiaodong, Zhang, Xinjie, Hou, Xinzhu, Min, Xu, Zou, Xun, Shen, Xuyang, Gong, Yan, Zhu, Yingjie, Zhou, Yipeng, Zhong, Yiran, Hu, Yongyi, Fan, Yuanxiang, Yu, Yue, Yang, Yufeng, Li, Yuhao, Huang, Yunan, Li, Yunji, Huang, Yunpeng, Xu, Yunzhi, Mao, Yuxin, Li, Zehan, Li, Zekang, Tao, Zewei, Ying, Zewen, Cong, Zhaoyang, Qin, Zhen, Fan, Zhenhua, Yu, Zhihang, Jiang, Zhuo, Wu, Zijia
We introduce MiniMax-01 series, including MiniMax-Text-01 and MiniMax-VL-01, which are comparable to top-tier models while offering superior capabilities in processing longer contexts. The core lies in lightning attention and its efficient scaling. To maximize computational capacity, we integrate it with Mixture of Experts (MoE), creating a model with 32 experts and 456 billion total parameters, of which 45.9 billion are activated for each token. We develop an optimized parallel strategy and highly efficient computation-communication overlap techniques for MoE and lightning attention. This approach enables us to conduct efficient training and inference on models with hundreds of billions of parameters across contexts spanning millions of tokens. The context window of MiniMax-Text-01 can reach up to 1 million tokens during training and extrapolate to 4 million tokens during inference at an affordable cost. Our vision-language model, MiniMax-VL-01 is built through continued training with 512 billion vision-language tokens. Experiments on both standard and in-house benchmarks show that our models match the performance of state-of-the-art models like GPT-4o and Claude-3.5-Sonnet while offering 20-32 times longer context window. We publicly release MiniMax-01 at https://github.com/MiniMax-AI.
SaliencyI2PLoc: saliency-guided image-point cloud localization using contrastive learning
Li, Yuhao, Li, Jianping, Dong, Zhen, Wang, Yuan, Yang, Bisheng
Image to point cloud global localization is crucial for robot navigation in GNSS-denied environments and has become increasingly important for multi-robot map fusion and urban asset management. The modality gap between images and point clouds poses significant challenges for cross-modality fusion. Current cross-modality global localization solutions either require modality unification, which leads to information loss, or rely on engineered training schemes to encode multi-modality features, which often lack feature alignment and relation consistency. To address these limitations, we propose, SaliencyI2PLoc, a novel contrastive learning based architecture that fuses the saliency map into feature aggregation and maintains the feature relation consistency on multi-manifold spaces. To alleviate the pre-process of data mining, the contrastive learning framework is applied which efficiently achieves cross-modality feature mapping. The context saliency-guided local feature aggregation module is designed, which fully leverages the contribution of the stationary information in the scene generating a more representative global feature. Furthermore, to enhance the cross-modality feature alignment during contrastive learning, the consistency of relative relationships between samples in different manifold spaces is also taken into account. Experiments conducted on urban and highway scenario datasets demonstrate the effectiveness and robustness of our method. Specifically, our method achieves a Recall@1 of 78.92% and a Recall@20 of 97.59% on the urban scenario evaluation dataset, showing an improvement of 37.35% and 18.07%, compared to the baseline method. This demonstrates that our architecture efficiently fuses images and point clouds and represents a significant step forward in cross-modality global localization. The project page and code will be released.
Reinforcement Learning Within the Classical Robotics Stack: A Case Study in Robot Soccer
Labiosa, Adam, Wang, Zhihan, Agarwal, Siddhant, Cong, William, Hemkumar, Geethika, Harish, Abhinav Narayan, Hong, Benjamin, Kelle, Josh, Li, Chen, Li, Yuhao, Shao, Zisen, Stone, Peter, Hanna, Josiah P.
Robot decision-making in partially observable, real-time, dynamic, and multi-agent environments remains a difficult and unsolved challenge. Model-free reinforcement learning (RL) is a promising approach to learning decision-making in such domains, however, end-to-end RL in complex environments is often intractable. To address this challenge in the RoboCup Standard Platform League (SPL) domain, we developed a novel architecture integrating RL within a classical robotics stack, while employing a multi-fidelity sim2real approach and decomposing behavior into learned sub-behaviors with heuristic selection. Our architecture led to victory in the 2024 RoboCup SPL Challenge Shield Division. In this work, we fully describe our system's architecture and empirically analyze key design decisions that contributed to its success. Our approach demonstrates how RL-based behaviors can be integrated into complete robot behavior architectures.
CoFiI2P: Coarse-to-Fine Correspondences for Image-to-Point Cloud Registration
Kang, Shuhao, Liao, Youqi, Li, Jianping, Liang, Fuxun, Li, Yuhao, Li, Fangning, Dong, Zhen, Yang, Bisheng
Image-to-point cloud (I2P) registration is a fundamental task in the field of autonomous vehicles and transportation systems for cross-modality data fusion and localization. Existing I2P registration methods estimate correspondences at the point/pixel level, often overlooking global alignment. However, I2P matching can easily converge to a local optimum when performed without high-level guidance from global constraints. To address this issue, this paper introduces CoFiI2P, a novel I2P registration network that extracts correspondences in a coarse-to-fine manner to achieve the globally optimal solution. First, the image and point cloud data are processed through a Siamese encoder-decoder network for hierarchical feature extraction. Second, a coarse-to-fine matching module is designed to leverage these features and establish robust feature correspondences. Specifically, In the coarse matching phase, a novel I2P transformer module is employed to capture both homogeneous and heterogeneous global information from the image and point cloud data. This enables the estimation of coarse super-point/super-pixel matching pairs with discriminative descriptors. In the fine matching module, point/pixel pairs are established with the guidance of super-point/super-pixel correspondences. Finally, based on matching pairs, the transform matrix is estimated with the EPnP-RANSAC algorithm. Extensive experiments conducted on the KITTI dataset demonstrate that CoFiI2P achieves impressive results, with a relative rotation error (RRE) of 1.14 degrees and a relative translation error (RTE) of 0.29 meters. These results represent a significant improvement of 84\% in RRE and 89\% in RTE compared to the current state-of-the-art (SOTA) method. Qualitative results are available at https://youtu.be/ovbedasXuZE. The source code will be publicly released at https://github.com/kang-1-2-3/CoFiI2P.
Optimal Private Payoff Manipulation against Commitment in Extensive-form Games
Chen, Yurong, Deng, Xiaotie, Li, Yuhao
To take advantage of strategy commitment, a useful tactic of playing games, a leader must learn enough information about the follower's payoff function. However, this leaves the follower a chance to provide fake information and influence the final game outcome. Through a carefully contrived payoff function misreported to the learning leader, the follower may induce an outcome that benefits him more, compared to the ones when he truthfully behaves. We study the follower's optimal manipulation via such strategic behaviors in extensive-form games. Followers' different attitudes are taken into account. An optimistic follower maximizes his true utility among all game outcomes that can be induced by some payoff function. A pessimistic follower only considers misreporting payoff functions that induce a unique game outcome. For all the settings considered in this paper, we characterize all the possible game outcomes that can be induced successfully. We show that it is polynomial-time tractable for the follower to find the optimal way of misreporting his private payoff information. Our work completely resolves this follower's optimal manipulation problem on an extensive-form game tree.
Learning to Manipulate a Commitment Optimizer
Chen, Yurong, Deng, Xiaotie, Gan, Jiarui, Li, Yuhao
It is shown in recent studies that in a Stackelberg game the follower can manipulate the leader by deviating from their true best-response behavior. Such manipulations are computationally tractable and can be highly beneficial for the follower. Meanwhile, they may result in significant payoff losses for the leader, sometimes completely defeating their first-mover advantage. A warning to commitment optimizers, the risk these findings indicate appears to be alleviated to some extent by a strict information advantage the manipulations rely on. That is, the follower knows the full information about both players' payoffs whereas the leader only knows their own payoffs. In this paper, we study the manipulation problem with this information advantage relaxed. We consider the scenario where the follower is not given any information about the leader's payoffs to begin with but has to learn to manipulate by interacting with the leader. The follower can gather necessary information by querying the leader's optimal commitments against contrived best-response behaviors. Our results indicate that the information advantage is not entirely indispensable to the follower's manipulations: the follower can learn the optimal way to manipulate in polynomial time with polynomially many queries of the leader's optimal commitment.