Li, Yitong
How to Democratise and Protect AI: Fair and Differentially Private Decentralised Deep Learning
Lyu, Lingjuan, Li, Yitong, Nandakumar, Karthik, Yu, Jiangshan, Ma, Xingjun
This paper firstly considers the research problem of fairness in collaborative deep learning, while ensuring privacy. A novel reputation system is proposed through digital tokens and local credibility to ensure fairness, in combination with differential privacy to guarantee privacy. In particular, we build a fair and differentially private decentralised deep learning framework called FDPDDL, which enables parties to derive more accurate local models in a fair and private manner by using our developed two-stage scheme: during the initialisation stage, artificial samples generated by Differentially Private Generative Adversarial Network (DPGAN) are used to mutually benchmark the local credibility of each party and generate initial tokens; during the update stage, Differentially Private SGD (DPSGD) is used to facilitate collaborative privacy-preserving deep learning, and local credibility and tokens of each party are updated according to the quality and quantity of individually released gradients. Experimental results on benchmark datasets under three realistic settings demonstrate that FDPDDL achieves high fairness, yields comparable accuracy to the centralised and distributed frameworks, and delivers better accuracy than the standalone framework.
Towards Differentially Private Text Representations
Lyu, Lingjuan, Li, Yitong, He, Xuanli, Xiao, Tong
Most deep learning frameworks require users to pool their local data or model updates to a trusted server to train or maintain a global model. The assumption of a trusted server who has access to user information is ill-suited in many applications. To tackle this problem, we develop a new deep learning framework under an untrusted server setting, which includes three modules: (1) embedding module, (2) randomization module, and (3) classifier module. For the randomization module, we propose a novel local differentially private (LDP) protocol to reduce the impact of privacy parameter $\epsilon$ on accuracy, and provide enhanced flexibility in choosing randomization probabilities for LDP. Analysis and experiments show that our framework delivers comparable or even better performance than the non-private framework and existing LDP protocols, demonstrating the advantages of our LDP protocol.
Improving Disentangled Text Representation Learning with Information-Theoretic Guidance
Cheng, Pengyu, Min, Martin Renqiang, Shen, Dinghan, Malon, Christopher, Zhang, Yizhe, Li, Yitong, Carin, Lawrence
Learning disentangled representations of natural language is essential for many NLP tasks, e.g., conditional text generation, style transfer, personalized dialogue systems, etc. Similar problems have been studied extensively for other forms of data, such as images and videos. However, the discrete nature of natural language makes the disentangling of textual representations more challenging (e.g., the manipulation over the data space cannot be easily achieved). Inspired by information theory, we propose a novel method that effectively manifests disentangled representations of text, without any supervision on semantics. A new mutual information upper bound is derived and leveraged to measure dependence between style and content. By minimizing this upper bound, the proposed method induces style and content embeddings into two independent low-dimensional spaces. Experiments on both conditional text generation and text-style transfer demonstrate the high quality of our disentangled representation in terms of content and style preservation.
Kernel-Based Approaches for Sequence Modeling: Connections to Neural Methods
Liang, Kevin, Wang, Guoyin, Li, Yitong, Henao, Ricardo, Carin, Lawrence
We investigate time-dependent data analysis from the perspective of recurrent kernel machines, from which models with hidden units and gated memory cells arise naturally. By considering dynamic gating of the memory cell, a model closely related to the long short-term memory (LSTM) recurrent neural network is derived. Extending this setup to $n$-gram filters, the convolutional neural network (CNN), Gated CNN, and recurrent additive network (RAN) are also recovered as special cases. Our analysis provides a new perspective on the LSTM, while also extending it to $n$-gram convolutional filters. Experiments are performed on natural language processing tasks and on analysis of local field potentials (neuroscience).
Gaussian-Process-Based Dynamic Embedding for Textual Networks
Cheng, Pengyu, Li, Yitong, Zhang, Xinyuan, Cheng, Liqun, Carlson, David, Carin, Lawrence
Textual network embedding aims to learn low-dimensional representations of text-annotated nodes in a graph. Prior works have typically focused on fixed graph structures. However, real-world networks are often dynamic. We address this challenge with a novel end-to-end node-embedding model, called Dynamic Embedding for Textual Networks with a Gaussian Process (DetGP). Because the structure is allowed to be dynamic, our method uses the Gaussian process to take advantage of its non-parametric properties. After training, DetGP can be applied efficiently to dynamic graphs without re-training or backpropagation. To use both local and global graph structures, diffusion is used to model multiple hops between neighbors. The relative importance of global versus local structure for the embeddings is learned automatically. With the non-parametric nature of the Gaussian process, updating the embeddings for a changed graph structure requires only a forward pass through the learned model. Experiments demonstrate the empirical effectiveness of our method compared to baseline approaches, on link prediction and node classification. We further show that DetGP can be straightforwardly and efficiently applied to dynamic textual networks.
Kernel-Based Approaches for Sequence Modeling: Connections to Neural Methods
Liang, Kevin J, Wang, Guoyin, Li, Yitong, Henao, Ricardo, Carin, Lawrence
We investigate time-dependent data analysis from the perspective of recurrent kernel machines, from which models with hidden units and gated memory cells arise naturally. By considering dynamic gating of the memory cell, a model closely related to the long short-term memory (LSTM) recurrent neural network is derived. Extending this setup to $n$-gram filters, the convolutional neural network (CNN), Gated CNN, and recurrent additive network (RAN) are also recovered as special cases. Our analysis provides a new perspective on the LSTM, while also extending it to $n$-gram convolutional filters. Experiments are performed on natural language processing tasks and on analysis of local field potentials (neuroscience). We demonstrate that the variants we derive from kernels perform on par or even better than traditional neural methods. For the neuroscience application, the new models demonstrate significant improvements relative to the prior state of the art.
LMVP: Video Predictor with Leaked Motion Information
Wang, Dong, Li, Yitong, Cao, Wei, Chen, Liqun, Wei, Qi, Carin, Lawrence
We propose a Leaked Motion Video Predictor (LMVP) to predict future frames by capturing the spatial and temporal dependencies from given inputs. The motion is modeled by a newly proposed component, motion guider, which plays the role of both learner and teacher. Specifically, it {\em learns} the temporal features from real data and {\em guides} the generator to predict future frames. The spatial consistency in video is modeled by an adaptive filtering network. To further ensure the spatio-temporal consistency of the prediction, a discriminator is also adopted to distinguish the real and generated frames. Further, the discriminator leaks information to the motion guider and the generator to help the learning of motion. The proposed LMVP can effectively learn the static and temporal features in videos without the need for human labeling. Experiments on synthetic and real data demonstrate that LMVP can yield state-of-the-art results.
Enhanced Input Modeling for Construction Simulation using Bayesian Deep Neural Networks
Li, Yitong, Ji, Wenying
ABSTRACT This paper aims to propose a novel deep learning-integrated framework for deriving reliable simulation input models through incorporating multi-source information. The framework sources and extracts multisource data generated from construction operations, which provides rich information for input modeling. The framework implements Bayesian deep neural networks to facilitate the purpose of incorporating richer information in input modeling. A case study on road paving operation is performed to test the feasibility and applicability of the proposed framework. Overall, this research enhances input modeling by deriving detailed input models, thereby, augmenting the decision-making processes in construction operations.
Towards Fair and Decentralized Privacy-Preserving Deep Learning with Blockchain
Lyu, Lingjuan, Yu, Jiangshan, Nandakumar, Karthik, Li, Yitong, Ma, Xingjun, Jin, Jiong
In collaborative deep learning, current learning frameworks follow either a centralized architecture or a distributed architecture. Whilst centralized architecture deploys a central server to train a global model over the massive amount of joint data from all parties, distributed architecture aggregates parameter updates from participating parties' local model training, via a parameter server. These two server-based architectures present security and robustness vulnerabilities such as single-point-of-failure, single-point-of-breach, privacy leakage, and lack of fairness. To address these problems, we design, implement, and evaluate a purely decentralized privacy-preserving deep learning framework, called DPPDL. DPPDL makes the first investigation on the research problem of fairness in collaborative deep learning, and simultaneously provides fairness and privacy by proposing two novel algorithms: initial benchmarking and privacy-preserving collaborative deep learning. During initial benchmarking, each party trains a local Differentially Private Generative Adversarial Network (DPGAN) and publishes the generated privacy-preserving artificial samples for other parties to label, based on the quality of which to initialize local credibility list for other parties. The local credibility list reflects how much one party contributes to another party, and it is used and updated during collaborative learning to ensure fairness. To protect gradients transaction during privacy-preserving collaborative deep learning, we further put forward a three-layer onion-style encryption scheme. We experimentally demonstrate, on benchmark image datasets, that accuracy, privacy and fairness in collaborative deep learning can be effectively addressed at the same time by our proposed DPPDL framework. Moreover, DPPDL provides a viable solution to detect and isolate the cheating party in the system.
On Target Shift in Adversarial Domain Adaptation
Li, Yitong, Murias, Michael, Major, Samantha, Dawson, Geraldine, Carlson, David E.
Discrepancy between training and testing domains is a fundamental problem in the generalization of machine learning techniques. Recently, several approaches have been proposed to learn domain invariant feature representations through adversarial deep learning. However, label shift, where the percentage of data in each class is different between domains, has received less attention. Label shift naturally arises in many contexts, especially in behavioral studies where the behaviors are freely chosen. In this work, we propose a method called Domain Adversarial nets for Target Shift (DATS) to address label shift while learning a domain invariant representation. This is accomplished by using distribution matching to estimate label proportions in a blind test set. We extend this framework to handle multiple domains by developing a scheme to upweight source domains most similar to the target domain. Empirical results show that this framework performs well under large label shift in synthetic and real experiments, demonstrating the practical importance.