Kernel-Based Approaches for Sequence Modeling: Connections to Neural Methods

Liang, Kevin, Wang, Guoyin, Li, Yitong, Henao, Ricardo, Carin, Lawrence

Neural Information Processing Systems 

We investigate time-dependent data analysis from the perspective of recurrent kernel machines, from which models with hidden units and gated memory cells arise naturally. By considering dynamic gating of the memory cell, a model closely related to the long short-term memory (LSTM) recurrent neural network is derived. Extending this setup to $n$-gram filters, the convolutional neural network (CNN), Gated CNN, and recurrent additive network (RAN) are also recovered as special cases. Our analysis provides a new perspective on the LSTM, while also extending it to $n$-gram convolutional filters. Experiments are performed on natural language processing tasks and on analysis of local field potentials (neuroscience).