Li, Xunkai
Rethinking Graph Structure Learning in the Era of LLMs
Zhang, Zhihan, Li, Xunkai, Zeng, Guang, Qin, Hongchao, Li, Ronghua, Wang, Guoren
Recently, the emergence of large language models (LLMs) has prompted researchers to explore the integration of language descriptions into graphs, aiming to enhance model encoding capabilities from a data-centric perspective. This graph representation is called text-attributed graphs (TAGs). A review of prior advancements highlights that graph structure learning (GSL) is a pivotal technique for improving data utility, making it highly relevant to efficient TAG learning. However, most GSL methods are tailored for traditional graphs without textual information, underscoring the necessity of developing a new GSL paradigm. Despite clear motivations, it remains challenging: (1) How can we define a reasonable optimization objective for GSL in the era of LLMs, considering the massive parameters in LLM? (2) How can we design an efficient model architecture that enables seamless integration of LLM for this optimization objective? For Question 1, we reformulate existing GSL optimization objectives as a tree optimization framework, shifting the focus from obtaining a well-trained edge predictor to a language-aware tree sampler. For Question 2, we propose decoupled and training-free model design principles for LLM integration, shifting the focus from computation-intensive fine-tuning to more efficient inference. Based on this, we propose Large Language and Tree Assistant (LLaTA), which leverages tree-based LLM in-context learning to enhance the understanding of topology and text, enabling reliable inference and generating improved graph structure. Extensive experiments on 10 TAG datasets demonstrate that LLaTA enjoys flexibility - incorporated with any backbone; scalability - outperforms other LLM-based GSL methods in terms of running efficiency; effectiveness - achieves SOTA performance.
ScaDyG:A New Paradigm for Large-scale Dynamic Graph Learning
Wu, Xiang, Li, Xunkai, Li, Rong-Hua, Zhao, Kangfei, Wang, Guoren
Dynamic graphs (DGs), which capture time-evolving relationships between graph entities, have widespread real-world applications. To efficiently encode DGs for downstream tasks, most dynamic graph neural networks follow the traditional message-passing mechanism and extend it with time-based techniques. Despite their effectiveness, the growth of historical interactions introduces significant scalability issues, particularly in industry scenarios. To address this limitation, we propose ScaDyG, with the core idea of designing a time-aware scalable learning paradigm as follows: 1) Time-aware Topology Reformulation: ScaDyG first segments historical interactions into time steps (intra and inter) based on dynamic modeling, enabling weight-free and time-aware graph propagation within pre-processing. 2) Dynamic Temporal Encoding: To further achieve fine-grained graph propagation within time steps, ScaDyG integrates temporal encoding through a combination of exponential functions in a scalable manner. 3) Hypernetwork-driven Message Aggregation: After obtaining the propagated features (i.e., messages), ScaDyG utilizes hypernetwork to analyze historical dependencies, implementing node-wise representation by an adaptive temporal fusion. Extensive experiments on 12 datasets demonstrate that ScaDyG performs comparably well or even outperforms other SOTA methods in both node and link-level downstream tasks, with fewer learnable parameters and higher efficiency.
Toward Model-centric Heterogeneous Federated Graph Learning: A Knowledge-driven Approach
lai, Huilin, Zeng, Guang, Li, Xunkai, Shen, Xudong, Zhu, Yinlin, Luo, Ye, Lu, Jianwei, Zhu, Lei
Federated graph learning (FGL) has emerged as a promising paradigm for collaborative machine learning, enabling multiple parties to jointly train models while preserving the privacy of raw graph data. However, existing FGL methods often overlook the model-centric heterogeneous FGL (MHtFGL) problem, which arises in real-world applications, such as the aggregation of models from different companies with varying scales and architectures. MHtFGL presents an additional challenge: the diversity of client model architectures hampers common learning and integration of graph representations. To address this issue, we propose the Federated Graph Knowledge Collaboration (FedGKC) framework, comprising two key components: Client-side Self-Mutual Knowledge Distillation, which fosters effective knowledge sharing among clients through copilot models; and Server-side Knowledge-Aware Model Aggregation, which enhances model integration by accounting for the knowledge acquired by clients. Experiments on eight benchmark datasets demonstrate that FedGKC achieves an average accuracy improvement of 3.74% over baseline models in MHtFGL scenarios, while also maintaining excellent performance in homogeneous settings.
Toward Scalable Graph Unlearning: A Node Influence Maximization based Approach
Li, Xunkai, Fan, Bowen, Wu, Zhengyu, Li, Zhiyu, Li, Rong-Hua, Wang, Guoren
Machine unlearning, as a pivotal technology for enhancing model robustness and data privacy, has garnered significant attention in prevalent web mining applications, especially in thriving graph-based scenarios. However, most existing graph unlearning (GU) approaches face significant challenges due to the intricate interactions among web-scale graph elements during the model training: (1) The gradient-driven node entanglement hinders the complete knowledge removal in response to unlearning requests; (2) The billion-level graph elements in the web scenarios present inevitable scalability issues. To break the above limitations, we open up a new perspective by drawing a connection between GU and conventional social influence maximization. To this end, we propose Node Influence Maximization (NIM) through the decoupled influence propagation model and fine-grained influence function in a scalable manner, which is crafted to be a plug-and-play strategy to identify potential nodes affected by unlearning entities. This approach enables offline execution independent of GU, allowing it to be seamlessly integrated into most GU methods to improve their unlearning performance. Based on this, we introduce Scalable Graph Unlearning (SGU) as a new fine-tuned framework, which balances the forgetting and reasoning capability of the unlearned model by entity-specific optimizations. Extensive experiments on 14 datasets, including large-scale ogbn-papers100M, have demonstrated the effectiveness of our approach. Specifically, NIM enhances the forgetting capability of most GU methods, while SGU achieves comprehensive SOTA performance and maintains scalability.
Toward Effective Digraph Representation Learning: A Magnetic Adaptive Propagation based Approach
Li, Xunkai, Su, Daohan, Wu, Zhengyu, Zeng, Guang, Qin, Hongchao, Li, Rong-Hua, Wang, Guoren
The $q$-parameterized magnetic Laplacian serves as the foundation of directed graph (digraph) convolution, enabling this kind of digraph neural network (MagDG) to encode node features and structural insights by complex-domain message passing. As a generalization of undirected methods, MagDG shows superior capability in modeling intricate web-scale topology. Despite the great success achieved by existing MagDGs, limitations still exist: (1) Hand-crafted $q$: The performance of MagDGs depends on selecting an appropriate $q$-parameter to construct suitable graph propagation equations in the complex domain. This parameter tuning, driven by downstream tasks, limits model flexibility and significantly increases manual effort. (2) Coarse Message Passing: Most approaches treat all nodes with the same complex-domain propagation and aggregation rules, neglecting their unique digraph contexts. This oversight results in sub-optimal performance. To address the above issues, we propose two key techniques: (1) MAP is crafted to be a plug-and-play complex-domain propagation optimization strategy in the context of digraph learning, enabling seamless integration into any MagDG to improve predictions while enjoying high running efficiency. (2) MAP++ is a new digraph learning framework, further incorporating a learnable mechanism to achieve adaptively edge-wise propagation and node-wise aggregation in the complex domain for better performance. Extensive experiments on 12 datasets demonstrate that MAP enjoys flexibility for it can be incorporated with any MagDG, and scalability as it can deal with web-scale digraphs. MAP++ achieves SOTA predictive performance on 4 different downstream tasks.
Towards Federated Graph Learning in One-shot Communication
Yan, Guochen, Li, Xunkai, Xie, Luyuan, Zhang, Wentao, Shen, Qingni, Fang, Yuejian, Wu, Zhonghai
Federated Graph Learning (FGL) has emerged as a promising paradigm for breaking data silos among distributed private graphs. In practical scenarios involving heterogeneous distributed graph data, personalized Federated Graph Learning (pFGL) aims to enhance model utility by training personalized models tailored to client needs. However, existing pFGL methods often require numerous communication rounds under heterogeneous graphs, leading to significant communication overhead and security concerns. While One-shot Federated Learning (OFL) enables collaboration in a single round, existing OFL methods are designed for image-centric tasks and ineffective for graph data, leaving a critical gap in the field. Additionally, personalized models derived from existing methods suffer from bias, failing to effectively generalize to the minority. To address these challenges, we propose the first $\textbf{O}$ne-shot $\textbf{p}$ersonalized $\textbf{F}$ederated $\textbf{G}$raph $\textbf{L}$earning method ($\textbf{O-pFGL}$) for node classification, compatible with Secure Aggregation protocols for privacy preservation. Specifically, for effective graph learning in one communication round, our method estimates and aggregates class-wise feature distribution statistics to construct a global pseudo-graph on the server, facilitating the training of a global graph model. To mitigate bias, we introduce a two-stage personalized training approach that adaptively balances local personal information and global insights from the pseudo-graph, improving both personalization and generalization. Extensive experiments on 12 multi-scale graph datasets demonstrate that our method significantly outperforms state-of-the-art baselines across various settings.
OpenGU: A Comprehensive Benchmark for Graph Unlearning
Fan, Bowen, Ai, Yuming, Li, Xunkai, Guo, Zhilin, Li, Rong-Hua, Wang, Guoren
Graph Machine Learning is essential for understanding and analyzing relational data. However, privacy-sensitive applications demand the ability to efficiently remove sensitive information from trained graph neural networks (GNNs), avoiding the unnecessary time and space overhead caused by retraining models from scratch. To address this issue, Graph Unlearning (GU) has emerged as a critical solution, with the potential to support dynamic graph updates in data management systems and enable scalable unlearning in distributed data systems while ensuring privacy compliance. Unlike machine unlearning in computer vision or other fields, GU faces unique difficulties due to the non-Euclidean nature of graph data and the recursive message-passing mechanism of GNNs. Additionally, the diversity of downstream tasks and the complexity of unlearning requests further amplify these challenges. Despite the proliferation of diverse GU strategies, the absence of a benchmark providing fair comparisons for GU, and the limited flexibility in combining downstream tasks and unlearning requests, have yielded inconsistencies in evaluations, hindering the development of this domain. To fill this gap, we present OpenGU, the first GU benchmark, where 16 SOTA GU algorithms and 37 multi-domain datasets are integrated, enabling various downstream tasks with 13 GNN backbones when responding to flexible unlearning requests. Based on this unified benchmark framework, we are able to provide a comprehensive and fair evaluation for GU. Through extensive experimentation, we have drawn $8$ crucial conclusions about existing GU methods, while also gaining valuable insights into their limitations, shedding light on potential avenues for future research.
Graph Learning in the Era of LLMs: A Survey from the Perspective of Data, Models, and Tasks
Li, Xunkai, Wu, Zhengyu, Wu, Jiayi, Cui, Hanwen, Jia, Jishuo, Li, Rong-Hua, Wang, Guoren
With the increasing prevalence of cross-domain Text-Attributed Graph (TAG) Data (e.g., citation networks, recommendation systems, social networks, and ai4science), the integration of Graph Neural Networks (GNNs) and Large Language Models (LLMs) into a unified Model architecture (e.g., LLM as enhancer, LLM as collaborators, LLM as predictor) has emerged as a promising technological paradigm. The core of this new graph learning paradigm lies in the synergistic combination of GNNs' ability to capture complex structural relationships and LLMs' proficiency in understanding informative contexts from the rich textual descriptions of graphs. Therefore, we can leverage graph description texts with rich semantic context to fundamentally enhance Data quality, thereby improving the representational capacity of model-centric approaches in line with data-centric machine learning principles. By leveraging the strengths of these distinct neural network architectures, this integrated approach addresses a wide range of TAG-based Task (e.g., graph learning, graph reasoning, and graph question answering), particularly in complex industrial scenarios (e.g., supervised, few-shot, and zero-shot settings). In other words, we can treat text as a medium to enable cross-domain generalization of graph learning Model, allowing a single graph model to effectively handle the diversity of downstream graph-based Task across different data domains. This work serves as a foundational reference for researchers and practitioners looking to advance graph learning methodologies in the rapidly evolving landscape of LLM. We consistently maintain the related open-source materials at \url{https://github.com/xkLi-Allen/Awesome-GNN-in-LLMs-Papers}.
Towards Data-centric Machine Learning on Directed Graphs: a Survey
Sun, Henan, Li, Xunkai, Su, Daohan, Han, Junyi, Li, Rong-Hua, Wang, Guoren
In recent years, Graph Neural Networks (GNNs) have made significant advances in processing structured data. However, most of them primarily adopted a model-centric approach, which simplifies graphs by converting them into undirected formats and emphasizes model designs. This approach is inherently limited in real-world applications due to the unavoidable information loss in simple undirected graphs and the model optimization challenges that arise when exceeding the upper bounds of this sub-optimal data representational capacity. As a result, there has been a shift toward data-centric methods that prioritize improving graph quality and representation. Specifically, various types of graphs can be derived from naturally structured data, including heterogeneous graphs, hypergraphs, and directed graphs. Among these, directed graphs offer distinct advantages in topological systems by modeling causal relationships, and directed GNNs have been extensively studied in recent years. However, a comprehensive survey of this emerging topic is still lacking. Therefore, we aim to provide a comprehensive review of directed graph learning, with a particular focus on a data-centric perspective. Specifically, we first introduce a novel taxonomy for existing studies. Subsequently, we re-examine these methods from the data-centric perspective, with an emphasis on understanding and improving data representation. It demonstrates that a deep understanding of directed graphs and their quality plays a crucial role in model performance. Additionally, we explore the diverse applications of directed GNNs across 10+ domains, highlighting their broad applicability. Finally, we identify key opportunities and challenges within the field, offering insights that can guide future research and development in directed graph learning.
Federated Continual Graph Learning
Zhu, Yinlin, Li, Xunkai, Hu, Miao, Wu, Di
In the era of big data, managing evolving graph data poses substantial challenges due to storage costs and privacy issues. Training graph neural networks (GNNs) on such evolving data usually causes catastrophic forgetting, impairing performance on earlier tasks. Despite existing continual graph learning (CGL) methods mitigating this to some extent, they predominantly operate in centralized architectures and overlook the potential of distributed graph databases to harness collective intelligence for enhanced performance optimization. To address these challenges, we present a pioneering study on Federated Continual Graph Learning (FCGL), which adapts GNNs to multiple evolving graphs within decentralized settings while adhering to storage and privacy constraints. Our work begins with a comprehensive empirical analysis of FCGL, assessing its data characteristics, feasibility, and effectiveness, and reveals two principal challenges: local graph forgetting (LGF), where local GNNs forget prior knowledge when adapting to new tasks, and global expertise conflict (GEC), where the global GNN exhibits sub-optimal performance in both adapting to new tasks and retaining old ones, arising from inconsistent client expertise during server-side parameter aggregation. To tackle these, we propose the POWER framework, which mitigates LGF by preserving and replaying experience nodes with maximum local-global coverage at each client and addresses GEC by using a pseudo prototype reconstruction strategy and trajectory-aware knowledge transfer at the central server. Extensive evaluations across multiple graph datasets demonstrate POWER's superior performance over straightforward federated extensions of the centralized CGL algorithms and vision-focused federated continual learning algorithms. Our code is available at https://github.com/zyl24/FCGL_POWER.