Li, Xinran
Exponential Topology-enabled Scalable Communication in Multi-agent Reinforcement Learning
Li, Xinran, Wang, Xiaolu, Bai, Chenjia, Zhang, Jun
In cooperative multi-agent reinforcement learning (MARL), well-designed communication protocols can effectively facilitate consensus among agents, thereby enhancing task performance. Moreover, in large-scale multi-agent systems commonly found in real-world applications, effective communication plays an even more critical role due to the escalated challenge of partial observability compared to smaller-scale setups. In this work, we endeavor to develop a scalable communication protocol for MARL. Unlike previous methods that focus on selecting optimal pairwise communication links-a task that becomes increasingly complex as the number of agents grows-we adopt a global perspective on communication topology design. Specifically, we propose utilizing the exponential topology to enable rapid information dissemination among agents by leveraging its small-diameter and small-size properties. This approach leads to a scalable communication protocol, named ExpoComm. To fully unlock the potential of exponential graphs as communication topologies, we employ memory-based message processors and auxiliary tasks to ground messages, ensuring that they reflect global information and benefit decision-making. Extensive experiments on large-scale cooperative benchmarks, including MAgent and Infrastructure Management Planning, demonstrate the superior performance and robust zero-shot transferability of ExpoComm compared to existing communication strategies. The code is publicly available at https://github.com/LXXXXR/ExpoComm.
SymbioSim: Human-in-the-loop Simulation Platform for Bidirectional Continuing Learning in Human-Robot Interaction
Chen, Haoran, Xu, Yiteng, Ren, Yiming, Ye, Yaoqin, Li, Xinran, Ding, Ning, Cong, Peishan, Wang, Ziyi, Liu, Bushi, Chen, Yuhan, Dou, Zhiyang, Leng, Xiaokun, Li, Manyi, Ma, Yuexin, Tu, Changhe
The development of intelligent robots seeks to seamlessly integrate them into the human world, providing assistance and companionship in daily life and work, with the ultimate goal of achieving human-robot symbiosis. To realize this vision, robots must continuously learn and evolve through consistent interaction and collaboration with humans, while humans need to gradually develop an understanding of and trust in robots through shared experiences. However, training and testing algorithms directly on physical robots involve substantial costs and safety risks. Moreover, current robotic simulators fail to support real human participation, limiting their ability to provide authentic interaction experiences and gather valuable human feedback. In this paper, we introduce SymbioSim, a novel human-in-the-loop robotic simulation platform designed to enable the safe and efficient development, evaluation, and optimization of human-robot interactions. By leveraging a carefully designed system architecture and modules, SymbioSim delivers a natural and realistic interaction experience, facilitating bidirectional continuous learning and adaptation for both humans and robots. Extensive experiments and user studies demonstrate the platform's promising performance and highlight its potential to significantly advance research on human-robot symbiosis.
Achieving Hiding and Smart Anti-Jamming Communication: A Parallel DRL Approach against Moving Reactive Jammer
Li, Yangyang, Xu, Yuhua, Li, Wen, Li, Guoxin, Feng, Zhibing, Liu, Songyi, Du, Jiatao, Li, Xinran
This paper addresses the challenge of anti-jamming in moving reactive jamming scenarios. The moving reactive jammer initiates high-power tracking jamming upon detecting any transmission activity, and when unable to detect a signal, resorts to indiscriminate jamming. This presents dual imperatives: maintaining hiding to avoid the jammer's detection and simultaneously evading indiscriminate jamming. Spread spectrum techniques effectively reduce transmitting power to elude detection but fall short in countering indiscriminate jamming. Conversely, changing communication frequencies can help evade indiscriminate jamming but makes the transmission vulnerable to tracking jamming without spread spectrum techniques to remain hidden. Current methodologies struggle with the complexity of simultaneously optimizing these two requirements due to the expansive joint action spaces and the dynamics of moving reactive jammers. To address these challenges, we propose a parallelized deep reinforcement learning (DRL) strategy. The approach includes a parallelized network architecture designed to decompose the action space. A parallel exploration-exploitation selection mechanism replaces the $\varepsilon $-greedy mechanism, accelerating convergence. Simulations demonstrate a nearly 90\% increase in normalized throughput.
Learn How to Query from Unlabeled Data Streams in Federated Learning
Sun, Yuchang, Li, Xinran, Lin, Tao, Zhang, Jun
Federated learning (FL) enables collaborative learning among decentralized clients while safeguarding the privacy of their local data. Existing studies on FL typically assume offline labeled data available at each client when the training starts. Nevertheless, the training data in practice often arrive at clients in a streaming fashion without ground-truth labels. Given the expensive annotation cost, it is critical to identify a subset of informative samples for labeling on clients. However, selecting samples locally while accommodating the global training objective presents a challenge unique to FL. In this work, we tackle this conundrum by framing the data querying process in FL as a collaborative decentralized decision-making problem and proposing an effective solution named LeaDQ, which leverages multi-agent reinforcement learning algorithms. In particular, under the implicit guidance from global information, LeaDQ effectively learns the local policies for distributed clients and steers them towards selecting samples that can enhance the global model's accuracy. Extensive simulations on image and text tasks show that LeaDQ advances the model performance in various FL scenarios, outperforming the benchmarking algorithms.
Kaleidoscope: Learnable Masks for Heterogeneous Multi-agent Reinforcement Learning
Li, Xinran, Pan, Ling, Zhang, Jun
In multi-agent reinforcement learning (MARL), parameter sharing is commonly employed to enhance sample efficiency. However, the popular approach of full parameter sharing often leads to homogeneous policies among agents, potentially limiting the performance benefits that could be derived from policy diversity. To address this critical limitation, we introduce \emph{Kaleidoscope}, a novel adaptive partial parameter sharing scheme that fosters policy heterogeneity while still maintaining high sample efficiency. Specifically, Kaleidoscope maintains one set of common parameters alongside multiple sets of distinct, learnable masks for different agents, dictating the sharing of parameters. It promotes diversity among policy networks by encouraging discrepancy among these masks, without sacrificing the efficiencies of parameter sharing. This design allows Kaleidoscope to dynamically balance high sample efficiency with a broad policy representational capacity, effectively bridging the gap between full parameter sharing and non-parameter sharing across various environments. We further extend Kaleidoscope to critic ensembles in the context of actor-critic algorithms, which could help improve value estimations.Our empirical evaluations across extensive environments, including multi-agent particle environment, multi-agent MuJoCo and StarCraft multi-agent challenge v2, demonstrate the superior performance of Kaleidoscope compared with existing parameter sharing approaches, showcasing its potential for performance enhancement in MARL. The code is publicly available at \url{https://github.com/LXXXXR/Kaleidoscope}.
Reinforcement Learning with Intrinsically Motivated Feedback Graph for Lost-sales Inventory Control
Liu, Zifan, Li, Xinran, Chen, Shibo, Li, Gen, Jiang, Jiashuo, Zhang, Jun
Reinforcement learning (RL) has proven to be well-performed and general-purpose in the inventory control (IC). However, further improvement of RL algorithms in the IC domain is impeded due to two limitations of online experience. First, online experience is expensive to acquire in real-world applications. With the low sample efficiency nature of RL algorithms, it would take extensive time to train the RL policy to convergence. Second, online experience may not reflect the true demand due to the lost sales phenomenon typical in IC, which makes the learning process more challenging. To address the above challenges, we propose a decision framework that combines reinforcement learning with feedback graph (RLFG) and intrinsically motivated exploration (IME) to boost sample efficiency. In particular, we first take advantage of the inherent properties of lost-sales IC problems and design the feedback graph (FG) specially for lost-sales IC problems to generate abundant side experiences aid RL updates. Then we conduct a rigorous theoretical analysis of how the designed FG reduces the sample complexity of RL methods. Based on the theoretical insights, we design an intrinsic reward to direct the RL agent to explore to the state-action space with more side experiences, further exploiting FG's power. Experimental results demonstrate that our method greatly improves the sample efficiency of applying RL in IC. Our code is available at https://anonymous.4open.science/r/RLIMFG4IC-811D/
A Federated Online Restless Bandit Framework for Cooperative Resource Allocation
Tong, Jingwen, Li, Xinran, Fu, Liqun, Zhang, Jun, Letaief, Khaled B.
Restless multi-armed bandits (RMABs) have been widely utilized to address resource allocation problems with Markov reward processes (MRPs). Existing works often assume that the dynamics of MRPs are known prior, which makes the RMAB problem solvable from an optimization perspective. Nevertheless, an efficient learning-based solution for RMABs with unknown system dynamics remains an open problem. In this paper, we study the cooperative resource allocation problem with unknown system dynamics of MRPs. This problem can be modeled as a multi-agent online RMAB problem, where multiple agents collaboratively learn the system dynamics while maximizing their accumulated rewards. We devise a federated online RMAB framework to mitigate the communication overhead and data privacy issue by adopting the federated learning paradigm. Based on this framework, we put forth a Federated Thompson Sampling-enabled Whittle Index (FedTSWI) algorithm to solve this multi-agent online RMAB problem. The FedTSWI algorithm enjoys a high communication and computation efficiency, and a privacy guarantee. Moreover, we derive a regret upper bound for the FedTSWI algorithm. Finally, we demonstrate the effectiveness of the proposed algorithm on the case of online multi-user multi-channel access. Numerical results show that the proposed algorithm achieves a fast convergence rate of $\mathcal{O}(\sqrt{T\log(T)})$ and better performance compared with baselines. More importantly, its sample complexity decreases with the number of agents.
Local Observability of VINS and LINS
Li, Xinran
Under the assumption that there exist two features observed by the camera without occlusion, the unobservable directions of VINS are uniformly globally translation and global rotations about the gravity vector. The unobservable directions of LINS are same as VINS, while only one feature need to be observed. Also, a constraint in Observability-Constrained VINS (OC-VINS) is proved.
Context-aware Communication for Multi-agent Reinforcement Learning
Li, Xinran, Zhang, Jun
Effective communication protocols in multi-agent reinforcement learning (MARL) are critical to fostering cooperation and enhancing team performance. To leverage communication, many previous works have proposed to compress local information into a single message and broadcast it to all reachable agents. This simplistic messaging mechanism, however, may fail to provide adequate, critical, and relevant information to individual agents, especially in severely bandwidth-limited scenarios. This motivates us to develop context-aware communication schemes for MARL, aiming to deliver personalized messages to different agents. Our communication protocol, named CACOM, consists of two stages. In the first stage, agents exchange coarse representations in a broadcast fashion, providing context for the second stage. Following this, agents utilize attention mechanisms in the second stage to selectively generate messages personalized for the receivers. Furthermore, we employ the learned step size quantization (LSQ) technique for message quantization to reduce the communication overhead. To evaluate the effectiveness of CACOM, we integrate it with both actor-critic and value-based MARL algorithms. Empirical results on cooperative benchmark tasks demonstrate that CACOM provides evident performance gains over baselines under communication-constrained scenarios. The code is publicly available at https://github.com/LXXXXR/CACOM.
Analysis on Multi-robot Relative 6-DOF Pose Estimation Error Based on UWB Range
Li, Xinran, Zheng, Shuaikang, Zheng, Pengcheng, Zhang, Haifeng, Li, Zhitian, Zou, Xudong
Relative pose estimation is the foundational requirement for multi-robot system, while it is a challenging research topic in infrastructure-free scenes. In this study, we analyze the relative 6-DOF pose estimation error of multi-robot system in GNSS-denied and anchor-free environment. An analytical lower bound of position and orientation estimation error is given under the assumption that distance between the nodes are far more than the size of robotic platform. Through simulation, impact of distance between nodes, altitudes and circumradius of tag simplex on pose estimation accuracy is discussed, which verifies the analysis results. Our analysis is expected to determine parameters (e.g. deployment of tags) of UWB based multi-robot systems.