Goto

Collaborating Authors

 Li, Xingyu


Exploring the Impact of Temperature Scaling in Softmax for Classification and Adversarial Robustness

arXiv.org Artificial Intelligence

The softmax function is a fundamental component in deep learning. This study delves into the often-overlooked parameter within the softmax function, known as "temperature," providing novel insights into the practical and theoretical aspects of temperature scaling for image classification. Our empirical studies, adopting convolutional neural networks and transformers on multiple benchmark datasets, reveal that moderate temperatures generally introduce better overall performance. Through extensive experiments and rigorous theoretical analysis, we explore the role of temperature scaling in model training and unveil that temperature not only influences learning step size but also shapes the model's optimization direction. Moreover, for the first time, we discover a surprising benefit of elevated temperatures: enhanced model robustness against common corruption, natural perturbation, and non-targeted adversarial attacks like Projected Gradient Descent. We extend our discoveries to adversarial training, demonstrating that, compared to the standard softmax function with the default temperature value, higher temperatures have the potential to enhance adversarial training. The insights of this work open new avenues for improving model performance and security in deep learning applications.


MDHP-Net: Detecting Injection Attacks on In-vehicle Network using Multi-Dimensional Hawkes Process and Temporal Model

arXiv.org Artificial Intelligence

The integration of intelligent and connected technologies in modern vehicles, while offering enhanced functionalities through Electronic Control Unit and interfaces like OBD-II and telematics, also exposes the vehicle's in-vehicle network (IVN) to potential cyberattacks. In this paper, we consider a specific type of cyberattack known as the injection attack. As demonstrated by empirical data from real-world cybersecurity adversarial competitions(available at https://mimic2024.xctf.org.cn/race/qwmimic2024 ), these injection attacks have excitation effect over time, gradually manipulating network traffic and disrupting the vehicle's normal functioning, ultimately compromising both its stability and safety. To profile the abnormal behavior of attackers, we propose a novel injection attack detector to extract long-term features of attack behavior. Specifically, we first provide a theoretical analysis of modeling the time-excitation effects of the attack using Multi-Dimensional Hawkes Process (MDHP). A gradient descent solver specifically tailored for MDHP, MDHP-GDS, is developed to accurately estimate optimal MDHP parameters. We then propose an injection attack detector, MDHP-Net, which integrates optimal MDHP parameters with MDHP-LSTM blocks to enhance temporal feature extraction. By introducing MDHP parameters, MDHP-Net captures complex temporal features that standard Long Short-Term Memory (LSTM) cannot, enriching temporal dependencies within our customized structure. Extensive evaluations demonstrate the effectiveness of our proposed detection approach.


ATLAS: Adapter-Based Multi-Modal Continual Learning with a Two-Stage Learning Strategy

arXiv.org Artificial Intelligence

While vision-and-language models significantly advance in many fields, the challenge of continual learning is unsolved. Parameter-efficient modules like adapters and prompts present a promising way to alleviate catastrophic forgetting. However, existing works usually learn individual adapters for each task, which may result in redundant knowledge among adapters. Moreover, they continue to use the original pre-trained model to initialize the downstream model, leading to negligible changes in the model's generalization compared to the original model. In addition, there is still a lack of research investigating the consequences of integrating a multi-modal model into the updating procedure for both uni-modal and multi-modal tasks and the subsequent impacts it has on downstream tasks. In this paper, we propose an adapter-based two-stage learning paradigm, a multi-modal continual learning scheme that consists of experience-based learning and novel knowledge expansion, which helps the model fully use experience knowledge and compensate for novel knowledge. Extensive experiments demonstrate that our method is proficient for continual learning. It expands the distribution of representation upstream while also minimizing the negative impact of forgetting previous tasks. Additionally, it enhances the generalization capability for downstream tasks. Furthermore, we incorporate both multi-modal and uni-modal tasks into upstream continual learning. We observe that learning from upstream tasks can help with downstream tasks. Our code will be available at: https://github.com/lihong2303/ATLAS.


FedGCA: Global Consistent Augmentation Based Single-Source Federated Domain Generalization

arXiv.org Artificial Intelligence

Federated Domain Generalization (FedDG) aims to train the global model for generalization ability to unseen domains with multi-domain training samples. However, clients in federated learning networks are often confined to a single, non-IID domain due to inherent sampling and temporal limitations. The lack of cross-domain interaction and the in-domain divergence impede the learning of domain-common features and limit the effectiveness of existing FedDG, referred to as the single-source FedDG (sFedDG) problem. To address this, we introduce the Federated Global Consistent Augmentation (FedGCA) method, which incorporates a style-complement module to augment data samples with diverse domain styles. To ensure the effective integration of augmented samples, FedGCA employs both global guided semantic consistency and class consistency, mitigating inconsistencies from local semantics within individual clients and classes across multiple clients. The conducted extensive experiments demonstrate the superiority of FedGCA.


Enhancing Weakly-Supervised Histopathology Image Segmentation with Knowledge Distillation on MIL-Based Pseudo-Labels

arXiv.org Artificial Intelligence

Segmenting tumors in histological images is vital for cancer diagnosis. While fully supervised models excel with pixel-level annotations, creating such annotations is labor-intensive and costly. Accurate histopathology image segmentation under weakly-supervised conditions with coarse-grained image labels is still a challenging problem. Although multiple instance learning (MIL) has shown promise in segmentation tasks, surprisingly, no previous pseudo-supervision methods have used MIL-based outputs as pseudo-masks for training. We suspect this stems from concerns over noises in MIL results affecting pseudo supervision quality. To explore the potential of leveraging MIL-based segmentation for pseudo supervision, we propose a novel distillation framework for histopathology image segmentation. This framework introduces a iterative fusion-knowledge distillation strategy, enabling the student model to learn directly from the teacher's comprehensive outcomes. Through dynamic role reversal between the fixed teacher and learnable student models and the incorporation of weighted cross-entropy loss for model optimization, our approach prevents performance deterioration and noise amplification during knowledge distillation. Experimental results on public histopathology datasets, Camelyon16 and Digestpath2019, demonstrate that our approach not only complements various MIL-based segmentation methods but also significantly enhances their performance. Additionally, our method achieves new SOTA in the field.


Stability and Generalization for Stochastic Recursive Momentum-based Algorithms for (Strongly-)Convex One to $K$-Level Stochastic Optimizations

arXiv.org Artificial Intelligence

STOchastic Recursive Momentum (STORM)-based algorithms have been widely developed to solve one to $K$-level ($K \geq 3$) stochastic optimization problems. Specifically, they use estimators to mitigate the biased gradient issue and achieve near-optimal convergence results. However, there is relatively little work on understanding their generalization performance, particularly evident during the transition from one to $K$-level optimization contexts. This paper provides a comprehensive generalization analysis of three representative STORM-based algorithms: STORM, COVER, and SVMR, for one, two, and $K$-level stochastic optimizations under both convex and strongly convex settings based on algorithmic stability. Firstly, we define stability for $K$-level optimizations and link it to generalization. Then, we detail the stability results for three prominent STORM-based algorithms. Finally, we derive their excess risk bounds by balancing stability results with optimization errors. Our theoretical results provide strong evidence to complete STORM-based algorithms: (1) Each estimator may decrease their stability due to variance with its estimation target. (2) Every additional level might escalate the generalization error, influenced by the stability and the variance between its cumulative stochastic gradient and the true gradient. (3) Increasing the batch size for the initial computation of estimators presents a favorable trade-off, enhancing the generalization performance.


MGSER-SAM: Memory-Guided Soft Experience Replay with Sharpness-Aware Optimization for Enhanced Continual Learning

arXiv.org Artificial Intelligence

Deep neural networks suffer from the catastrophic forgetting problem in the field of continual learning (CL). To address this challenge, we propose MGSER-SAM, a novel memory replay-based algorithm specifically engineered to enhance the generalization capabilities of CL models. We first intergrate the SAM optimizer, a component designed for optimizing flatness, which seamlessly fits into well-known Experience Replay frameworks such as ER and DER++. Then, MGSER-SAM distinctively addresses the complex challenge of reconciling conflicts in weight perturbation directions between ongoing tasks and previously stored memories, which is underexplored in the SAM optimizer. This is effectively accomplished by the strategic integration of soft logits and the alignment of memory gradient directions, where the regularization terms facilitate the concurrent minimization of various training loss terms integral to the CL process. Through rigorous experimental analysis conducted across multiple benchmarks, MGSER-SAM has demonstrated a consistent ability to outperform existing baselines in all three CL scenarios. Comparing to the representative memory replay-based baselines ER and DER++, MGSER-SAM not only improves the testing accuracy by $24.4\%$ and $17.6\%$ respectively, but also achieves the lowest forgetting on each benchmark.


Open Challenges and Opportunities in Federated Foundation Models Towards Biomedical Healthcare

arXiv.org Artificial Intelligence

This survey explores the transformative impact of foundation models (FMs) in artificial intelligence, focusing on their integration with federated learning (FL) for advancing biomedical research. Foundation models such as ChatGPT, LLaMa, and CLIP, which are trained on vast datasets through methods including unsupervised pretraining, self-supervised learning, instructed fine-tuning, and reinforcement learning from human feedback, represent significant advancements in machine learning. These models, with their ability to generate coherent text and realistic images, are crucial for biomedical applications that require processing diverse data forms such as clinical reports, diagnostic images, and multimodal patient interactions. The incorporation of FL with these sophisticated models presents a promising strategy to harness their analytical power while safeguarding the privacy of sensitive medical data. This approach not only enhances the capabilities of FMs in medical diagnostics and personalized treatment but also addresses critical concerns about data privacy and security in healthcare. This survey reviews the current applications of FMs in federated settings, underscores the challenges, and identifies future research directions including scaling FMs, managing data diversity, and enhancing communication efficiency within FL frameworks. The objective is to encourage further research into the combined potential of FMs and FL, laying the groundwork for groundbreaking healthcare innovations.


Generative manufacturing systems using diffusion models and ChatGPT

arXiv.org Artificial Intelligence

In this study, we introduce Generative Manufacturing Systems (GMS) as a novel approach to effectively manage and coordinate autonomous manufacturing assets, thereby enhancing their responsiveness and flexibility to address a wide array of production objectives and human preferences. Deviating from traditional explicit modeling, GMS employs generative AI, including diffusion models and ChatGPT, for implicit learning from envisioned futures, marking a shift from a model-optimum to a training-sampling decision-making. Through the integration of generative AI, GMS enables complex decision-making through interactive dialogue with humans, allowing manufacturing assets to generate multiple high-quality global decisions that can be iteratively refined based on human feedback. Empirical findings showcase GMS's substantial improvement in system resilience and responsiveness to uncertainties, with decision times reduced from seconds to milliseconds. The study underscores the inherent creativity and diversity in the generated solutions, facilitating human-centric decision-making through seamless and continuous human-machine interactions.


Reinforcement Learning with Generative Models for Compact Support Sets

arXiv.org Artificial Intelligence

Foundation models contain a wealth of information from their vast number of training samples. However, most prior arts fail to extract this information in a precise and efficient way for small sample sizes. In this work, we propose a framework utilizing reinforcement learning as a control for foundation models, allowing for the granular generation of small, focused synthetic support sets to augment the performance of neural network models on real data classification tasks. We first allow a reinforcement learning agent access to a novel context based dictionary; the agent then uses this dictionary with a novel prompt structure to form and optimize prompts as inputs to generative models, receiving feedback based on a reward function combining the change in validation accuracy and entropy. A support set is formed this way over several exploration steps. Our framework produced excellent results, increasing classification accuracy by significant margins for no additional labelling or data cost.