Plotting

 Li, Hui


A Multi-Agent Framework with Automated Decision Rule Optimization for Cross-Domain Misinformation Detection

arXiv.org Artificial Intelligence

Misinformation spans various domains, but detection methods trained on specific domains often perform poorly when applied to others. With the rapid development of Large Language Models (LLMs), researchers have begun to utilize LLMs for cross-domain misinformation detection. However, existing LLM-based methods often fail to adequately analyze news in the target domain, limiting their detection capabilities. More importantly, these methods typically rely on manually designed decision rules, which are limited by domain knowledge and expert experience, thus limiting the generalizability of decision rules to different domains. To address these issues, we propose a MultiAgent Framework for cross-domain misinformation detection with Automated Decision Rule Optimization (MARO). Under this framework, we first employs multiple expert agents to analyze target-domain news. Subsequently, we introduce a question-reflection mechanism that guides expert agents to facilitate higherquality analysis. Furthermore, we propose a decision rule optimization approach based on carefully-designed cross-domain validation tasks to iteratively enhance the effectiveness of decision rules in different domains. Experimental results and in-depth analysis on commonlyused datasets demonstrate that MARO achieves significant improvements over existing methods.


Volumetric Reconstruction From Partial Views for Task-Oriented Grasping

arXiv.org Artificial Intelligence

Object affordance and volumetric information are essential in devising effective grasping strategies under task-specific constraints. This paper presents an approach for inferring suitable grasping strategies from limited partial views of an object. To achieve this, a recurrent generative adversarial network (R-GAN) was proposed by incorporating a recurrent generator with long short-term memory (LSTM) units for it to process a variable number of depth scans. To determine object affordances, the AffordPose knowledge dataset is utilized as prior knowledge. Affordance retrieving is defined by the volume similarity measured via Chamfer Distance and action similarities. A Proximal Policy Optimization (PPO) reinforcement learning model is further implemented to refine the retrieved grasp strategies for task-oriented grasping. The retrieved grasp strategies were evaluated on a dual-arm mobile manipulation robot with an overall grasping accuracy of 89% for four tasks: lift, handle grasp, wrap grasp, and press.


Generalization Bounds for Equivariant Networks on Markov Data

arXiv.org Machine Learning

Equivariant neural networks play a pivotal role in analyzing datasets with symmetry properties, particularly in complex data structures. However, integrating equivariance with Markov properties presents notable challenges due to the inherent dependencies within such data. Previous research has primarily concentrated on establishing generalization bounds under the assumption of independently and identically distributed data, frequently neglecting the influence of Markov dependencies. In this study, we investigate the impact of Markov properties on generalization performance alongside the role of equivariance within this context. We begin by applying a new McDiarmid's inequality to derive a generalization bound for neural networks trained on Markov datasets, using Rademacher complexity as a central measure of model capacity. Subsequently, we utilize group theory to compute the covering number under equivariant constraints, enabling us to obtain an upper bound on the Rademacher complexity based on this covering number. This bound provides practical insights into selecting low-dimensional irreducible representations, enhancing generalization performance for fixed-width equivariant neural networks.


Flow-based Domain Randomization for Learning and Sequencing Robotic Skills

arXiv.org Artificial Intelligence

Domain randomization in reinforcement learning is an established technique for increasing the robustness of control policies trained in simulation. By randomizing environment properties during training, the learned policy can become robust to uncertainties along the randomized dimensions. While the environment distribution is typically specified by hand, in this paper we investigate automatically discovering a sampling distribution via entropy-regularized reward maximization of a normalizing-flow-based neural sampling distribution. We show that this architecture is more flexible and provides greater robustness than existing approaches that learn simpler, parameterized sampling distributions, as demonstrated in six simulated and one real-world robotics domain. Lastly, we explore how these learned sampling distributions, combined with a privileged value function, can be used for out-of-distribution detection in an uncertainty-aware multi-step manipulation planner.


DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning

arXiv.org Artificial Intelligence

We introduce our first-generation reasoning models, DeepSeek-R1-Zero and DeepSeek-R1. DeepSeek-R1-Zero, a model trained via large-scale reinforcement learning (RL) without supervised fine-tuning (SFT) as a preliminary step, demonstrates remarkable reasoning capabilities. Through RL, DeepSeek-R1-Zero naturally emerges with numerous powerful and intriguing reasoning behaviors. However, it encounters challenges such as poor readability, and language mixing. To address these issues and further enhance reasoning performance, we introduce DeepSeek-R1, which incorporates multi-stage training and cold-start data before RL. DeepSeek-R1 achieves performance comparable to OpenAI-o1-1217 on reasoning tasks. To support the research community, we open-source DeepSeek-R1-Zero, DeepSeek-R1, and six dense models (1.5B, 7B, 8B, 14B, 32B, 70B) distilled from DeepSeek-R1 based on Qwen and Llama.


Towards Lightweight Time Series Forecasting: a Patch-wise Transformer with Weak Data Enriching

arXiv.org Artificial Intelligence

Patch-wise Transformer based time series forecasting achieves superior accuracy. However, this superiority relies heavily on intricate model design with massive parameters, rendering both training and inference expensive, thus preventing their deployments on edge devices with limited resources and low latency requirements. In addition, existing methods often work in an autoregressive manner, which take into account only historical values, but ignore valuable, easy-to-obtain context information, such as weather forecasts, date and time of day. To contend with the two limitations, we propose LiPFormer, a novel Lightweight Patch-wise Transformer with weak data enriching. First, to simplify the Transformer backbone, LiPFormer employs a novel lightweight cross-patch attention and a linear transformation-based attention to eliminate Layer Normalization and Feed Forward Network, two heavy components in existing Transformers. Second, we propose a lightweight, weak data enriching module to provide additional, valuable weak supervision to the training. It enhances forecasting accuracy without significantly increasing model complexity as it does not involve expensive, human-labeling but using easily accessible context information. This facilitates the weak data enriching to plug-and-play on existing models. Extensive experiments on nine benchmark time series datasets demonstrate that LiPFormer outperforms state-of-the-art methods in accuracy, while significantly reducing parameter scale, training duration, and GPU memory usage. Deployment on an edge device reveals that LiPFormer takes only 1/3 inference time compared to classic Transformers. In addition, we demonstrate that the weak data enriching can integrate seamlessly into various Transformer based models to enhance their accuracy, suggesting its generality.


Method of data forward generation with partial differential equations for machine learning modeling in fluid mechanics

arXiv.org Artificial Intelligence

Artificial intelligence (AI) for fluid mechanics has become attractive topic. High-fidelity data is one of most critical issues for the successful applications of AI in fluid mechanics, however, it is expensively obtained or even inaccessible. This study proposes a high-efficient data forward generation method from the partial differential equations (PDEs). Specifically, the solutions of the PDEs are first generated either following a random field (e.g. Gaussian random field, GRF, computational complexity O(NlogN), N is the number of spatial points) or physical laws (e.g. a kind of spectra, computational complexity O(NM), M is the number of modes), then the source terms, boundary conditions and initial conditions are computed to satisfy PDEs. Thus, the data pairs of source terms, boundary conditions and initial conditions with corresponding solutions of PDEs can be constructed. A Poisson neural network (Poisson-NN) embedded in projection method and a wavelet transform convolutional neuro network (WTCNN) embedded in multigrid numerical simulation for solving incompressible Navier-Stokes equations is respectively proposed. The feasibility of generated data for training Poisson-NN and WTCNN is validated. The results indicate that even without any DNS data, the generated data can train these two models with excellent generalization and accuracy. The data following physical laws can significantly improve the convergence rate, generalization and accuracy than that generated following GRF.


Hallo3: Highly Dynamic and Realistic Portrait Image Animation with Diffusion Transformer Networks

arXiv.org Artificial Intelligence

Existing methodologies for animating portrait images face significant challenges, particularly in handling non-frontal perspectives, rendering dynamic objects around the portrait, and generating immersive, realistic backgrounds. In this paper, we introduce the first application of a pretrained transformer-based video generative model that demonstrates strong generalization capabilities and generates highly dynamic, realistic videos for portrait animation, effectively addressing these challenges. The adoption of a new video backbone model makes previous U-Net-based methods for identity maintenance, audio conditioning, and video extrapolation inapplicable. To address this limitation, we design an identity reference network consisting of a causal 3D VAE combined with a stacked series of transformer layers, ensuring consistent facial identity across video sequences. Additionally, we investigate various speech audio conditioning and motion frame mechanisms to enable the generation of continuous video driven by speech audio. Our method is validated through experiments on benchmark and newly proposed wild datasets, demonstrating substantial improvements over prior methods in generating realistic portraits characterized by diverse orientations within dynamic and immersive scenes. Further visualizations and the source code are available at: https://fudan-generative-vision.github.io/hallo3/.


DeepSeek-V3 Technical Report

arXiv.org Artificial Intelligence

We present DeepSeek-V3, a strong Mixture-of-Experts (MoE) language model with 671B total parameters with 37B activated for each token. To achieve efficient inference and cost-effective training, DeepSeek-V3 adopts Multi-head Latent Attention (MLA) and DeepSeekMoE architectures, which were thoroughly validated in DeepSeek-V2. Furthermore, DeepSeek-V3 pioneers an auxiliary-loss-free strategy for load balancing and sets a multi-token prediction training objective for stronger performance. We pre-train DeepSeek-V3 on 14.8 trillion diverse and high-quality tokens, followed by Supervised Fine-Tuning and Reinforcement Learning stages to fully harness its capabilities. Comprehensive evaluations reveal that DeepSeek-V3 outperforms other open-source models and achieves performance comparable to leading closed-source models. Despite its excellent performance, DeepSeek-V3 requires only 2.788M H800 GPU hours for its full training. In addition, its training process is remarkably stable. Throughout the entire training process, we did not experience any irrecoverable loss spikes or perform any rollbacks.


PediaBench: A Comprehensive Chinese Pediatric Dataset for Benchmarking Large Language Models

arXiv.org Artificial Intelligence

The emergence of Large Language Models (LLMs) in the medical domain has stressed a compelling need for standard datasets to evaluate their question-answering (QA) performance. Although there have been several benchmark datasets for medical QA, they either cover common knowledge across different departments or are specific to another department rather than pediatrics. Moreover, some of them are limited to objective questions and do not measure the generation capacity of LLMs. Therefore, they cannot comprehensively assess the QA ability of LLMs in pediatrics. To fill this gap, we construct PediaBench, the first Chinese pediatric dataset for LLM evaluation. Specifically, it contains 4,565 objective questions and 1,632 subjective questions spanning 12 pediatric disease groups. It adopts an integrated scoring criterion based on different difficulty levels to thoroughly assess the proficiency of an LLM in instruction following, knowledge understanding, clinical case analysis, etc. Finally, we validate the effectiveness of PediaBench with extensive experiments on 20 open-source and commercial LLMs. Through an in-depth analysis of experimental results, we offer insights into the ability of LLMs to answer pediatric questions in the Chinese context, highlighting their limitations for further improvements. Our code and data are published at https://github.com/ACMISLab/PediaBench.