Goto

Collaborating Authors

 Li, Dian


Adaptive Subsampling and Learned Model Improve Spatiotemporal Resolution of Tactile Skin

arXiv.org Artificial Intelligence

High-speed tactile arrays are essential for real-time robotic control in unstructured environments, but high pixel counts limit readout rates of most large tactile arrays to below 100Hz. We introduce ACTS - adaptive compressive tactile subsampling - a method that efficiently samples tactile matrices and reconstructs interactions using sparse recovery and a learned tactile dictionary. Tested on a 1024-pixel sensor array (32x32), ACTS increased frame rates by 18X compared to raster scanning, with minimal error. For the first time in large-area tactile skin, we demonstrate rapid object classification within 20ms of contact, high-speed projectile detection, ricochet angle estimation, and deformation tracking through enhanced spatiotemporal resolution. Our method can be implemented in firmware, upgrading existing low-cost, flexible, and robust tactile arrays into high-resolution systems for large-area spatiotemporal touch sensing.


Innovative Thinking, Infinite Humor: Humor Research of Large Language Models through Structured Thought Leaps

arXiv.org Artificial Intelligence

Humor is a culturally nuanced aspect of human language that presents challenges for understanding and generation, requiring participants to possess good creativity and strong associative thinking. Similar to reasoning tasks like solving math problems, humor generation requires continuous reflection and revision to foster creative thinking, rather than relying on a sudden flash of inspiration like Creative Leap-of-Thought (CLoT) paradigm. Although CLoT can realize the ability of remote association generation, this paradigm fails to generate humor content. Therefore, in this paper, we propose a systematic way of thinking about generating humor and based on it, we built Creative Leap of Structured Thought (CLoST) frame. First, a reward model is necessary achieve the purpose of being able to correct errors, since there is currently no expert model of humor and a usable rule to determine whether a piece of content is humorous. Judgement-oriented instructions are designed to improve the capability of a model, and we also propose an open-domain instruction evolutionary method to fully unleash the potential. Then, through reinforcement learning, the model learns to hone its rationales of the thought chain and refine the strategies it uses. Thus, it learns to recognize and correct its mistakes, and finally generate the most humorous and creative answer. These findings deepen our understanding of the creative capabilities of LLMs and provide ways to enhance LLMs' creative abilities for cross-domain innovative applications.


Chip-Tuning: Classify Before Language Models Say

arXiv.org Artificial Intelligence

The rapid development in the performance of large language models (LLMs) is accompanied by the escalation of model size, leading to the increasing cost of model training and inference. Previous research has discovered that certain layers in LLMs exhibit redundancy, and removing these layers brings only marginal loss in model performance. In this paper, we adopt the probing technique to explain the layer redundancy in LLMs and demonstrate that language models can be effectively pruned with probing classifiers. We propose chip-tuning, a simple and effective structured pruning framework specialized for classification problems. Chip-tuning attaches tiny probing classifiers named chips to different layers of LLMs, and trains chips with the backbone model frozen. After selecting a chip for classification, all layers subsequent to the attached layer could be removed with marginal performance loss. Experimental results on various LLMs and datasets demonstrate that chip-tuning significantly outperforms previous state-of-the-art baselines in both accuracy and pruning ratio, achieving a pruning ratio of up to 50%. We also find that chip-tuning could be applied on multimodal models, and could be combined with model finetuning, proving its excellent compatibility.


MetaTool: Facilitating Large Language Models to Master Tools with Meta-task Augmentation

arXiv.org Artificial Intelligence

Utilizing complex tools with Large Language Models (LLMs) is a critical component for grounding AI agents in various real-world scenarios. The core challenge of manipulating tools lies in understanding their usage and functionality. The prevailing approach involves few-shot prompting with demonstrations or fine-tuning on expert trajectories. However, for complex tools and tasks, mere in-context demonstrations may fail to cover sufficient knowledge. Training-based methods are also constrained by the high cost of dataset construction and limited generalizability. In this paper, we introduce a new tool learning methodology (MetaTool) that is generalizable for mastering any reusable toolset. Our approach includes a self-supervised data augmentation technique that enables LLMs to gain a comprehensive understanding of various tools, thereby improving their ability to complete tasks effectively. We develop a series of meta-tasks that involve predicting masked factors of tool execution. These self-supervised tasks enable the automatic generation of high-quality QA data concerning tool comprehension. By incorporating meta-task data into the instruction tuning process, the proposed MetaTool model achieves significant superiority to open-source models and is comparable to GPT-4/GPT-3.5 on multiple tool-oriented tasks.