Leonard, Naomi Ehrich
The Beatbots: A Musician-Informed Multi-Robot Percussion Quartet
Pu, Isabella, Snyder, Jeff, Leonard, Naomi Ehrich
Artistic creation is often seen as a uniquely human endeavor, yet robots bring distinct advantages to music-making, such as precise tempo control, unpredictable rhythmic complexities, and the ability to coordinate intricate human and robot performances. While many robotic music systems aim to mimic human musicianship, our work emphasizes the unique strengths of robots, resulting in a novel multi-robot performance instrument called the Beatbots, capable of producing music that is challenging for humans to replicate using current methods. The Beatbots were designed using an ``informed prototyping'' process, incorporating feedback from three musicians throughout development. We evaluated the Beatbots through a live public performance, surveying participants (N=28) to understand how they perceived and interacted with the robotic performance. Results show that participants valued the playfulness of the experience, the aesthetics of the robot system, and the unconventional robot-generated music. Expert musicians and non-expert roboticists demonstrated especially positive mindset shifts during the performance, although participants across all demographics had favorable responses. We propose design principles to guide the development of future robotic music systems and identify key robotic music affordances that our musician consultants considered particularly important for robotic music performance.
Think Deep and Fast: Learning Neural Nonlinear Opinion Dynamics from Inverse Dynamic Games for Split-Second Interactions
Hu, Haimin, DeCastro, Jonathan, Gopinath, Deepak, Rosman, Guy, Leonard, Naomi Ehrich, Fisac, Jaime Fernรกndez
Non-cooperative interactions commonly occur in multi-agent scenarios such as car racing, where an ego vehicle can choose to overtake the rival, or stay behind it until a safe overtaking "corridor" opens. While an expert human can do well at making such time-sensitive decisions, the development of autonomous agents capable of rapidly reasoning about complex, potentially conflicting options is yet to be fully addressed. The recently developed nonlinear opinion dynamics (NOD) model shows promise in enabling fast (i.e., at an exponential rate) opinion formation and avoiding safety-critical deadlocks. However, it remains an open challenge to determine the model parameters of NOD automatically and adaptively, accounting for the ever-changing environment of interaction. In this work, we propose for the first time a learning-based, game-theoretic approach to synthesize a Neural NOD model from expert demonstrations, given as a dataset containing (possibly incomplete) state and action trajectories of interacting agents. The learned NOD can be used by existing dynamic game solvers to plan decisively while accounting for the predicted change of other agents' intents, thus enabling situational awareness in planning. We demonstrate Neural NOD's ability to make fast and robust decisions in a simulated autonomous racing example, leading to tangible improvements in safety and overtaking performance over state-of-the-art data-driven game-theoretic planning methods.
Excitable crawling
Arbelaiz, Juncal, Franci, Alessio, Leonard, Naomi Ehrich, Sepulchre, Rodolphe, Bamieh, Bassam
We propose and analyze the suitability of a spiking controller to engineer the locomotion of a soft robotic crawler. Inspired by the FitzHugh-Nagumo model of neural excitability, we design a bistable controller with an electrical flipflop circuit representation capable of generating spikes on-demand when coupled to the passive crawler mechanics. A proprioceptive sensory signal from the crawler mechanics turns bistability of the controller into a rhythmic spiking. The output voltage, in turn, activates the crawler's actuators to generate movement through peristaltic waves. We show through geometric analysis that this control strategy achieves endogenous crawling. The electro-mechanical sensorimotor interconnection provides embodied negative feedback regulation, facilitating locomotion. Dimensional analysis provides insights on the characteristic scales in the crawler's mechanical and electrical dynamics, and how they determine the crawling gait. Adaptive control of the electrical scales to optimally match the mechanical scales can be envisioned to achieve further efficiency, as in homeostatic regulation of neuronal circuits. Our approach can scale up to multiple sensorimotor loops inspired by biological central pattern generators.
Learning to Predict 3D Rotational Dynamics from Images of a Rigid Body with Unknown Mass Distribution
Mason, Justice, Allen-Blanchette, Christine, Zolman, Nicholas, Davison, Elizabeth, Leonard, Naomi Ehrich
In many real-world settings, image observations of freely rotating 3D rigid bodies may be available when low-dimensional measurements are not. However, the high-dimensionality of image data precludes the use of classical estimation techniques to learn the dynamics. The usefulness of standard deep learning methods is also limited, because an image of a rigid body reveals nothing about the distribution of mass inside the body, which, together with initial angular velocity, is what determines how the body will rotate. We present a physics-based neural network model to estimate and predict 3D rotational dynamics from image sequences. We achieve this using a multi-stage prediction pipeline that maps individual images to a latent representation homeomorphic to $\mathbf{SO}(3)$, computes angular velocities from latent pairs, and predicts future latent states using the Hamiltonian equations of motion. We demonstrate the efficacy of our approach on new rotating rigid-body datasets of sequences of synthetic images of rotating objects, including cubes, prisms and satellites, with unknown uniform and non-uniform mass distributions. Our model outperforms competing baselines on our datasets, producing better qualitative predictions and reducing the error observed for the state-of-the-art Hamiltonian Generative Network by a factor of 2.
Threshold Decision-Making Dynamics Adaptive to Physical Constraints and Changing Environment
Amorim, Giovanna, Santos, Marรญa, Park, Shinkyu, Franci, Alessio, Leonard, Naomi Ehrich
We propose a threshold decision-making framework for controlling the physical dynamics of an agent switching between two spatial tasks. Our framework couples a nonlinear opinion dynamics model that represents the evolution of an agent's preference for a particular task with the physical dynamics of the agent. We prove the bifurcation that governs the behavior of the coupled dynamics. We show by means of the bifurcation behavior how the coupled dynamics are adaptive to the physical constraints of the agent. We also show how the bifurcation can be modulated to allow the agent to switch tasks based on thresholds adaptive to environmental conditions. We illustrate the benefits of the approach through a decentralized multi-robot task allocation application for trash collection.
Proactive Opinion-Driven Robot Navigation around Human Movers
Cathcart, Charlotte, Santos, Marรญa, Park, Shinkyu, Leonard, Naomi Ehrich
Abstract-- We propose, analyze, and experimentally verify a new proactive approach for robot social navigation driven by the robot's "opinion" for which way and by how much to pass human movers crossing its path. The robot forms an opinion over time according to nonlinear dynamics that depend on the robot's observations of human movers and its level of attention to these social cues. For these dynamics, it is guaranteed that when the robot's attention is greater than a critical value, deadlock in decision making is broken, and the robot rapidly forms a strong opinion, passing each human A robot using opinion-driven navigation to pass two humans. Autonomous mobile robots are increasingly being used Once the robot passes a human, its opinion with respect to for tasks in settings such as warehouses and open public that human is no longer relevant; the opinion quickly returns spaces where they will encounter human movers. In order to its neutral value, allowing the robot to continue towards to accomplish their tasks in these settings, the robots need its destination. Likewise, the robot's attention also goes to to reliably and gracefully navigate around human movers.
Multi-topic belief formation through bifurcations over signed social networks
Bizyaeva, Anastasia, Franci, Alessio, Leonard, Naomi Ehrich
We propose and analyze a nonlinear dynamic model of continuous-time multi-dimensional belief formation over signed social networks. Our model accounts for the effects of a structured belief system, self-appraisal, internal biases, and various sources of cognitive dissonance posited by recent theories in social psychology. We prove that strong beliefs emerge on the network as a consequence of a bifurcation. We analyze how the balance of social network effects in the model controls the nature of the bifurcation and, therefore, the belief-forming limit-set solutions. Our analysis provides constructive conditions on how multi-stable network belief equilibria and belief oscillations emerging at a belief-forming bifurcation depend on the communication network graph and belief system network graph. Our model and analysis provide new theoretical insights on the dynamics of social systems and a new principled framework for designing decentralized decision-making on engineered networks in the presence of structured relationships among alternatives.
Emergent Coordination through Game-Induced Nonlinear Opinion Dynamics
Hu, Haimin, Nakamura, Kensuke, Hsu, Kai-Chieh, Leonard, Naomi Ehrich, Fisac, Jaime Fernรกndez
We present a multi-agent decision-making framework for the emergent coordination of autonomous agents whose intents are initially undecided. Dynamic non-cooperative games have been used to encode multi-agent interaction, but ambiguity arising from factors such as goal preference or the presence of multiple equilibria may lead to coordination issues, ranging from the "freezing robot" problem to unsafe behavior in safety-critical events. The recently developed nonlinear opinion dynamics (NOD) provide guarantees for breaking deadlocks. However, choosing the appropriate model parameters automatically in general multi-agent settings remains a challenge. In this paper, we first propose a novel and principled procedure for synthesizing NOD based on the value functions of dynamic games conditioned on agents' intents. In particular, we provide for the two-player two-option case precise stability conditions for equilibria of the game-induced NOD based on the mismatch between agents' opinions and their game values. We then propose an optimization-based trajectory optimization algorithm that computes agents' policies guided by the evolution of opinions. The efficacy of our method is illustrated with a simulated toll station coordination example.
Sustained oscillations in multi-topic belief dynamics over signed networks
Bizyaeva, Anastasia, Franci, Alessio, Leonard, Naomi Ehrich
We study the dynamics of belief formation on multiple interconnected topics in networks of agents with a shared belief system. We establish sufficient conditions and necessary conditions under which sustained oscillations of beliefs arise on the network in a Hopf bifurcation and characterize the role of the communication graph and the belief system graph in shaping the relative phase and amplitude patterns of the oscillations. Additionally, we distinguish broad classes of graphs that exhibit such oscillations from those that do not.
One More Step Towards Reality: Cooperative Bandits with Imperfect Communication
Madhushani, Udari, Dubey, Abhimanyu, Leonard, Naomi Ehrich, Pentland, Alex
The cooperative bandit problem is increasingly becoming relevant due to its applications in large-scale decision-making. However, most research for this problem focuses exclusively on the setting with perfect communication, whereas in most real-world distributed settings, communication is often over stochastic networks, with arbitrary corruptions and delays. In this paper, we study cooperative bandit learning under three typical real-world communication scenarios, namely, (a) message-passing over stochastic time-varying networks, (b) instantaneous reward-sharing over a network with random delays, and (c) message-passing with adversarially corrupted rewards, including byzantine communication. For each of these environments, we propose decentralized algorithms that achieve competitive performance, along with near-optimal guarantees on the incurred group regret as well. Furthermore, in the setting with perfect communication, we present an improved delayed-update algorithm that outperforms the existing state-of-the-art on various network topologies. Finally, we present tight network-dependent minimax lower bounds on the group regret. Our proposed algorithms are straightforward to implement and obtain competitive empirical performance.