Lee, Yin Tat
Phi-4 Technical Report
Abdin, Marah, Aneja, Jyoti, Behl, Harkirat, Bubeck, Sébastien, Eldan, Ronen, Gunasekar, Suriya, Harrison, Michael, Hewett, Russell J., Javaheripi, Mojan, Kauffmann, Piero, Lee, James R., Lee, Yin Tat, Li, Yuanzhi, Liu, Weishung, Mendes, Caio C. T., Nguyen, Anh, Price, Eric, de Rosa, Gustavo, Saarikivi, Olli, Salim, Adil, Shah, Shital, Wang, Xin, Ward, Rachel, Wu, Yue, Yu, Dingli, Zhang, Cyril, Zhang, Yi
We present phi-4, a 14-billion parameter language model developed with a training recipe that is centrally focused on data quality. Unlike most language models, where pre-training is based primarily on organic data sources such as web content or code, phi-4 strategically incorporates synthetic data throughout the training process. While previous models in the Phi family largely distill the capabilities of a teacher model (specifically GPT-4), phi-4 substantially surpasses its teacher model on STEM-focused QA capabilities, giving evidence that our data-generation and post-training techniques go beyond distillation. Despite minimal changes to the phi-3 architecture, phi-4 achieves strong performance relative to its size -- especially on reasoning-focused benchmarks -- due to improved data, training curriculum, and innovations in the post-training scheme.
The Power of Sampling: Dimension-free Risk Bounds in Private ERM
Lee, Yin Tat, Liu, Daogao, Lu, Zhou
Differentially private empirical risk minimization (DP-ERM) is a fundamental problem in private optimization. While the theory of DP-ERM is well-studied, as large-scale models become prevalent, traditional DP-ERM methods face new challenges, including (1) the prohibitive dependence on the ambient dimension, (2) the highly non-smooth objective functions, (3) costly first-order gradient oracles. Such challenges demand rethinking existing DP-ERM methodologies. In this work, we show that the regularized exponential mechanism combined with existing samplers can address these challenges altogether: under the standard unconstrained domain and low-rank gradients assumptions, our algorithm can achieve rank-dependent risk bounds for non-smooth convex objectives using only zeroth order oracles, which was not accomplished by prior methods. This highlights the power of sampling in differential privacy. We further construct lower bounds, demonstrating that when gradients are full-rank, there is no separation between the constrained and unconstrained settings. Our lower bound is derived from a general black-box reduction from unconstrained to the constrained domain and an improved lower bound in the constrained setting, which might be of independent interest.
Phi-3 Technical Report: A Highly Capable Language Model Locally on Your Phone
Abdin, Marah, Jacobs, Sam Ade, Awan, Ammar Ahmad, Aneja, Jyoti, Awadallah, Ahmed, Awadalla, Hany, Bach, Nguyen, Bahree, Amit, Bakhtiari, Arash, Bao, Jianmin, Behl, Harkirat, Benhaim, Alon, Bilenko, Misha, Bjorck, Johan, Bubeck, Sébastien, Cai, Qin, Cai, Martin, Mendes, Caio César Teodoro, Chen, Weizhu, Chaudhary, Vishrav, Chen, Dong, Chen, Dongdong, Chen, Yen-Chun, Chen, Yi-Ling, Chopra, Parul, Dai, Xiyang, Del Giorno, Allie, de Rosa, Gustavo, Dixon, Matthew, Eldan, Ronen, Fragoso, Victor, Iter, Dan, Gao, Mei, Gao, Min, Gao, Jianfeng, Garg, Amit, Goswami, Abhishek, Gunasekar, Suriya, Haider, Emman, Hao, Junheng, Hewett, Russell J., Huynh, Jamie, Javaheripi, Mojan, Jin, Xin, Kauffmann, Piero, Karampatziakis, Nikos, Kim, Dongwoo, Khademi, Mahoud, Kurilenko, Lev, Lee, James R., Lee, Yin Tat, Li, Yuanzhi, Li, Yunsheng, Liang, Chen, Liden, Lars, Liu, Ce, Liu, Mengchen, Liu, Weishung, Lin, Eric, Lin, Zeqi, Luo, Chong, Madan, Piyush, Mazzola, Matt, Mitra, Arindam, Modi, Hardik, Nguyen, Anh, Norick, Brandon, Patra, Barun, Perez-Becker, Daniel, Portet, Thomas, Pryzant, Reid, Qin, Heyang, Radmilac, Marko, Rosset, Corby, Roy, Sambudha, Ruwase, Olatunji, Saarikivi, Olli, Saied, Amin, Salim, Adil, Santacroce, Michael, Shah, Shital, Shang, Ning, Sharma, Hiteshi, Shukla, Swadheen, Song, Xia, Tanaka, Masahiro, Tupini, Andrea, Wang, Xin, Wang, Lijuan, Wang, Chunyu, Wang, Yu, Ward, Rachel, Wang, Guanhua, Witte, Philipp, Wu, Haiping, Wyatt, Michael, Xiao, Bin, Xu, Can, Xu, Jiahang, Xu, Weijian, Yadav, Sonali, Yang, Fan, Yang, Jianwei, Yang, Ziyi, Yang, Yifan, Yu, Donghan, Yuan, Lu, Zhang, Chengruidong, Zhang, Cyril, Zhang, Jianwen, Zhang, Li Lyna, Zhang, Yi, Zhang, Yue, Zhang, Yunan, Zhou, Xiren
We introduce phi-3-mini, a 3.8 billion parameter language model trained on 3.3 trillion tokens, whose overall performance, as measured by both academic benchmarks and internal testing, rivals that of models such as Mixtral 8x7B and GPT-3.5 (e.g., phi-3-mini achieves 69% on MMLU and 8.38 on MT-bench), despite being small enough to be deployed on a phone. The innovation lies entirely in our dataset for training, a scaled-up version of the one used for phi-2, composed of heavily filtered publicly available web data and synthetic data. The model is also further aligned for robustness, safety, and chat format. We also provide some initial parameter-scaling results with a 7B and 14B models trained for 4.8T tokens, called phi-3-small and phi-3-medium, both significantly more capable than phi-3-mini (e.g., respectively 75% and 78% on MMLU, and 8.7 and 8.9 on MT-bench). Moreover, we also introduce phi-3-vision, a 4.2 billion parameter model based on phi-3-mini with strong reasoning capabilities for image and text prompts.
Differentially Private Synthetic Data via Foundation Model APIs 2: Text
Xie, Chulin, Lin, Zinan, Backurs, Arturs, Gopi, Sivakanth, Yu, Da, Inan, Huseyin A, Nori, Harsha, Jiang, Haotian, Zhang, Huishuai, Lee, Yin Tat, Li, Bo, Yekhanin, Sergey
Text data has become extremely valuable due to the emergence of machine learning algorithms that learn from it. A lot of high-quality text data generated in the real world is private and therefore cannot be shared or used freely due to privacy concerns. Generating synthetic replicas of private text data with a formal privacy guarantee, i.e., differential privacy (DP), offers a promising and scalable solution. However, existing methods necessitate DP finetuning of large language models (LLMs) on private data to generate DP synthetic data. This approach is not viable for proprietary LLMs (e.g., GPT-3.5) and also demands considerable computational resources for open-source LLMs. Lin et al. (2024) recently introduced the Private Evolution (PE) algorithm to generate DP synthetic images with only API access to diffusion models. In this work, we propose an augmented PE algorithm, named Aug-PE, that applies to the complex setting of text. We use API access to an LLM and generate DP synthetic text without any model training. We conduct comprehensive experiments on three benchmark datasets. Our results demonstrate that Aug-PE produces DP synthetic text that yields competitive utility with the SOTA DP finetuning baselines. This underscores the feasibility of relying solely on API access of LLMs to produce high-quality DP synthetic texts, thereby facilitating more accessible routes to privacy-preserving LLM applications. Our code and data are available at https://github.com/AI-secure/aug-pe.
Can Generalist Foundation Models Outcompete Special-Purpose Tuning? Case Study in Medicine
Nori, Harsha, Lee, Yin Tat, Zhang, Sheng, Carignan, Dean, Edgar, Richard, Fusi, Nicolo, King, Nicholas, Larson, Jonathan, Li, Yuanzhi, Liu, Weishung, Luo, Renqian, McKinney, Scott Mayer, Ness, Robert Osazuwa, Poon, Hoifung, Qin, Tao, Usuyama, Naoto, White, Chris, Horvitz, Eric
Generalist foundation models such as GPT-4 have displayed surprising capabilities in a wide variety of domains and tasks. Yet, there is a prevalent assumption that they cannot match specialist capabilities of fine-tuned models. For example, most explorations to date on medical competency benchmarks have leveraged domain-specific training, as exemplified by efforts on BioGPT and Med-PaLM. We build on a prior study of GPT-4's capabilities on medical challenge benchmarks in the absence of special training. Rather than using simple prompting to highlight the model's out-of-the-box capabilities, we perform a systematic exploration of prompt engineering. We find that prompting innovation can unlock deeper specialist capabilities and show that GPT-4 easily tops prior leading results for medical benchmarks. The prompting methods we explore are general purpose, and make no specific use of domain expertise, removing the need for expert-curated content. Our experimental design carefully controls for overfitting during the prompt engineering process. We introduce Medprompt, based on a composition of several prompting strategies. With Medprompt, GPT-4 achieves state-of-the-art results on all nine of the benchmark datasets in the MultiMedQA suite. The method outperforms leading specialist models such as Med-PaLM 2 by a significant margin with an order of magnitude fewer calls to the model. Steering GPT-4 with Medprompt achieves a 27% reduction in error rate on the MedQA dataset over the best methods to date achieved with specialist models and surpasses a score of 90% for the first time. Beyond medical problems, we show the power of Medprompt to generalize to other domains and provide evidence for the broad applicability of the approach via studies of the strategy on exams in electrical engineering, machine learning, philosophy, accounting, law, nursing, and clinical psychology.
Positional Description Matters for Transformers Arithmetic
Shen, Ruoqi, Bubeck, Sébastien, Eldan, Ronen, Lee, Yin Tat, Li, Yuanzhi, Zhang, Yi
Transformers, central to the successes in modern Natural Language Processing, often falter on arithmetic tasks despite their vast capabilities --which paradoxically include remarkable coding abilities. We observe that a crucial challenge is their naive reliance on positional information to solve arithmetic problems with a small number of digits, leading to poor performance on larger numbers. Herein, we delve deeper into the role of positional encoding, and propose several ways to fix the issue, either by modifying the positional encoding directly, or by modifying the representation of the arithmetic task to leverage standard positional encoding differently. We investigate the value of these modifications for three tasks: (i) classical multiplication, (ii) length extrapolation in addition, and (iii) addition in natural language context. For (i) we train a small model on a small dataset (100M parameters and 300k samples) with remarkable aptitude in (direct, no scratchpad) 15 digits multiplication and essentially perfect up to 12 digits, while usual training in this context would give a model failing at 4 digits multiplication. In the experiments on addition, we use a mere 120k samples to demonstrate: for (ii) extrapolation from 10 digits to testing on 12 digits numbers while usual training would have no extrapolation, and for (iii) almost perfect accuracy up to 5 digits while usual training would be correct only up to 3 digits (which is essentially memorization with a training set of 120k samples).
ReSQueing Parallel and Private Stochastic Convex Optimization
Carmon, Yair, Jambulapati, Arun, Jin, Yujia, Lee, Yin Tat, Liu, Daogao, Sidford, Aaron, Tian, Kevin
We introduce a new tool for stochastic convex optimization (SCO): a Reweighted Stochastic Query (ReSQue) estimator for the gradient of a function convolved with a (Gaussian) probability density. Combining ReSQue with recent advances in ball oracle acceleration [CJJJLST20, ACJJS21], we develop algorithms achieving state-of-the-art complexities for SCO in parallel and private settings. For a SCO objective constrained to the unit ball in $\mathbb{R}^d$, we obtain the following results (up to polylogarithmic factors). We give a parallel algorithm obtaining optimization error $\epsilon_{\text{opt}}$ with $d^{1/3}\epsilon_{\text{opt}}^{-2/3}$ gradient oracle query depth and $d^{1/3}\epsilon_{\text{opt}}^{-2/3} + \epsilon_{\text{opt}}^{-2}$ gradient queries in total, assuming access to a bounded-variance stochastic gradient estimator. For $\epsilon_{\text{opt}} \in [d^{-1}, d^{-1/4}]$, our algorithm matches the state-of-the-art oracle depth of [BJLLS19] while maintaining the optimal total work of stochastic gradient descent. Given $n$ samples of Lipschitz loss functions, prior works [BFTT19, BFGT20, AFKT21, KLL21] established that if $n \gtrsim d \epsilon_{\text{dp}}^{-2}$, $(\epsilon_{\text{dp}}, \delta)$-differential privacy is attained at no asymptotic cost to the SCO utility. However, these prior works all required a superlinear number of gradient queries. We close this gap for sufficiently large $n \gtrsim d^2 \epsilon_{\text{dp}}^{-3}$, by using ReSQue to design an algorithm with near-linear gradient query complexity in this regime.
Learning threshold neurons via the "edge of stability"
Ahn, Kwangjun, Bubeck, Sébastien, Chewi, Sinho, Lee, Yin Tat, Suarez, Felipe, Zhang, Yi
Existing analyses of neural network training often operate under the unrealistic assumption of an extremely small learning rate. This lies in stark contrast to practical wisdom and empirical studies, such as the work of J. Cohen et al. (ICLR 2021), which exhibit startling new phenomena (the "edge of stability" or "unstable convergence") and potential benefits for generalization in the large learning rate regime. Despite a flurry of recent works on this topic, however, the latter effect is still poorly understood. In this paper, we take a step towards understanding genuinely non-convex training dynamics with large learning rates by performing a detailed analysis of gradient descent for simplified models of two-layer neural networks. For these models, we provably establish the edge of stability phenomenon and discover a sharp phase transition for the step size below which the neural network fails to learn "threshold-like" neurons (i.e., neurons with a non-zero first-layer bias). This elucidates one possible mechanism by which the edge of stability can in fact lead to better generalization, as threshold neurons are basic building blocks with useful inductive bias for many tasks.
Automatic Prompt Optimization with "Gradient Descent" and Beam Search
Pryzant, Reid, Iter, Dan, Li, Jerry, Lee, Yin Tat, Zhu, Chenguang, Zeng, Michael
Large Language Models (LLMs) have shown impressive performance as general purpose agents, but their abilities remain highly dependent on prompts which are hand written with onerous trial-and-error effort. We propose a simple and nonparametric solution to this problem, Automatic Prompt Optimization (APO), which is inspired by numerical gradient descent to automatically improve prompts, assuming access to training data and an LLM API. The algorithm uses minibatches of data to form natural language "gradients" that criticize the current prompt. The gradients are then "propagated" into the prompt by editing the prompt in the opposite semantic direction of the gradient. These gradient descent steps are guided by a beam search and bandit selection procedure which significantly improves algorithmic efficiency. Preliminary results across three benchmark NLP tasks and the novel problem of LLM jailbreak detection suggest that Automatic Prompt Optimization can outperform prior prompt editing techniques and improve an initial prompt's performance by up to 31%, by using data to rewrite vague task descriptions into more precise annotation instructions.
Textbooks Are All You Need
Gunasekar, Suriya, Zhang, Yi, Aneja, Jyoti, Mendes, Caio César Teodoro, Del Giorno, Allie, Gopi, Sivakanth, Javaheripi, Mojan, Kauffmann, Piero, de Rosa, Gustavo, Saarikivi, Olli, Salim, Adil, Shah, Shital, Behl, Harkirat Singh, Wang, Xin, Bubeck, Sébastien, Eldan, Ronen, Kalai, Adam Tauman, Lee, Yin Tat, Li, Yuanzhi
We introduce phi-1, a new large language model for code, with significantly smaller size than competing models: phi-1 is a Transformer-based model with 1.3B parameters, trained for 4 days on 8 A100s, using a selection of ``textbook quality" data from the web (6B tokens) and synthetically generated textbooks and exercises with GPT-3.5 (1B tokens). Despite this small scale, phi-1 attains pass@1 accuracy 50.6% on HumanEval and 55.5% on MBPP. It also displays surprising emergent properties compared to phi-1-base, our model before our finetuning stage on a dataset of coding exercises, and phi-1-small, a smaller model with 350M parameters trained with the same pipeline as phi-1 that still achieves 45% on HumanEval.