Goto

Collaborating Authors

 Lee, Hung-yi


Full-Duplex-Bench: A Benchmark to Evaluate Full-duplex Spoken Dialogue Models on Turn-taking Capabilities

arXiv.org Artificial Intelligence

Spoken dialogue modeling introduces unique challenges beyond text-based language modeling, demanding robust turn-taking, backchanneling, and real-time interaction. Although most Spoken Dialogue Models (SDMs) rely on half-duplex processing (handling speech one turn at a time), emerging full-duplex SDMs can listen and speak simultaneously, enabling more natural and engaging conversations. However, current evaluations of such models remain limited, often focusing on turn-based metrics or high-level corpus analyses (e.g., turn gaps, pauses). To address this gap, we present Full-Duplex-Bench, a new benchmark that systematically evaluates key conversational behaviors: pause handling, backchanneling, turn-taking, and interruption management. Our framework uses automatic metrics for consistent and reproducible assessments of SDMs' interactive performance. By offering an open and standardized evaluation benchmark, we aim to advance spoken dialogue modeling and encourage the development of more interactive and natural dialogue systems.


TRACT: Regression-Aware Fine-tuning Meets Chain-of-Thought Reasoning for LLM-as-a-Judge

arXiv.org Artificial Intelligence

The LLM-as-a-judge paradigm uses large language models (LLMs) for automated text evaluation, where a numerical assessment is assigned by an LLM to the input text following scoring rubrics. Existing methods for LLM-as-a-judge use cross-entropy (CE) loss for fine-tuning, which neglects the numeric nature of score prediction. Recent work addresses numerical prediction limitations of LLM fine-tuning through regression-aware fine-tuning, which, however, does not consider chain-of-thought (CoT) reasoning for score prediction. In this paper, we introduce TRACT (Two-stage Regression-Aware fine-tuning with CoT), a method combining CoT reasoning with regression-aware training. TRACT consists of two stages: first, seed LLM is fine-tuned to generate CoTs, which serve as supervision for the second stage fine-tuning. The training objective of TRACT combines the CE loss for learning the CoT reasoning capabilities, and the regression-aware loss for the score prediction. Experiments across four LLM-as-a-judge datasets and two LLMs show that TRACT significantly outperforms existing methods. Extensive ablation studies validate the importance of each component in TRACT.


Answer, Refuse, or Guess? Investigating Risk-Aware Decision Making in Language Models

arXiv.org Artificial Intelligence

Knowing when to answer or refuse is crucial for safe and reliable decision-making language agents. Although prior work has introduced refusal strategies to boost LMs' reliability, how these models adapt their decisions to different risk levels remains underexplored. We formalize the task of risk-aware decision-making, expose critical weaknesses in existing LMs, and propose skill-decomposition solutions to mitigate them. Our findings show that even cutting-edge LMs--both regular and reasoning models--still require explicit prompt chaining to handle the task effectively, revealing the challenges that must be overcome to achieve truly autonomous decision-making agents.


Transferring Textual Preferences to Vision-Language Understanding through Model Merging

arXiv.org Artificial Intelligence

Large vision-language models (LVLMs) perform outstandingly across various multimodal tasks. However, their ability to evaluate generated content remains limited, and training vision-language reward models (VLRMs) with preference data is computationally expensive. This paper explores a training-free alternative by merging text-based reward models (RMs) with LVLMs to create VLRMs. Our approach shows that integrating these models leads to improved performance over LVLMs' scoring and text-based RMs, offering an efficient method for incorporating textual preferences into LVLMs.


Speech-FT: A Fine-tuning Strategy for Enhancing Speech Representation Models Without Compromising Generalization Ability

arXiv.org Artificial Intelligence

Speech representation models are highly effective at extracting general features for various tasks. While fine-tuning can enhance these representations for specific applications, it often compromises their generalization ability. To address this challenge, we propose Speech-FT, a fine-tuning strategy for speech representation models that leverages model merging to preserve generalization ability while still benefiting from fine-tuning. Speech-FT is effective across different fine-tuning scenarios and is compatible with various types of speech representation models, providing a versatile solution. Speech-FT offers an efficient and practical approach to further improving general speech representations after pre-training.


A Preliminary Exploration with GPT-4o Voice Mode

arXiv.org Artificial Intelligence

With the rise of multimodal large language models, GPT-4o stands out as a pioneering model, driving us to evaluate its capabilities. This report assesses GPT-4o across various tasks to analyze its audio processing and reasoning abilities. We find that GPT-4o exhibits strong knowledge in audio, speech, and music understanding, performing well in tasks like intent classification, spoken command classification, semantic and grammatical reasoning., multilingual speech recognition, and singing analysis. It also shows greater robustness against hallucinations than other large audio-language models (LALMs). However, it struggles with tasks such as audio duration prediction and instrument classification. Additionally, GPT-4o's safety mechanisms cause it to decline tasks like speaker identification, age classification, MOS prediction, and audio deepfake detection. Notably, the model exhibits a significantly different refusal rate when responding to speaker verification tasks on different datasets. This is likely due to variations in the accompanying instructions or the quality of the input audio, suggesting the sensitivity of its built-in safeguards. Finally, we acknowledge that model performance varies with evaluation protocols. This report only serves as a preliminary exploration of the current state of LALMs.


Gender Bias in Instruction-Guided Speech Synthesis Models

arXiv.org Artificial Intelligence

Recent advancements in controllable expressive speech synthesis, especially in text-to-speech (TTS) models, have allowed for the generation of speech with specific styles guided by textual descriptions, known as style prompts. While this development enhances the flexibility and naturalness of synthesized speech, there remains a significant gap in understanding how these models handle vague or abstract style prompts. This study investigates the potential gender bias in how models interpret occupation-related prompts, specifically examining their responses to instructions like "Act like a nurse". We explore whether these models exhibit tendencies to amplify gender stereotypes when interpreting such prompts. Our experimental results reveal the model's tendency to exhibit gender bias for certain occupations. Moreover, models of different sizes show varying degrees of this bias across these occupations.


BreezyVoice: Adapting TTS for Taiwanese Mandarin with Enhanced Polyphone Disambiguation -- Challenges and Insights

arXiv.org Artificial Intelligence

We present BreezyVoice, a Text-to-Speech (TTS) system specifically adapted for Taiwanese Mandarin, highlighting phonetic control abilities to address the unique challenges of polyphone disambiguation in the language. Building upon CosyVoice, we incorporate a $S^{3}$ tokenizer, a large language model (LLM), an optimal-transport conditional flow matching model (OT-CFM), and a grapheme to phoneme prediction model, to generate realistic speech that closely mimics human utterances. Our evaluation demonstrates BreezyVoice's superior performance in both general and code-switching contexts, highlighting its robustness and effectiveness in generating high-fidelity speech. Additionally, we address the challenges of generalizability in modeling long-tail speakers and polyphone disambiguation. Our approach significantly enhances performance and offers valuable insights into the workings of neural codec TTS systems.


Clear Minds Think Alike: What Makes LLM Fine-tuning Robust? A Study of Token Perplexity

arXiv.org Artificial Intelligence

Maintaining consistent model performance across domains is a fundamental challenge in machine learning. While recent work has explored using LLM-generated data for fine-tuning, its impact on cross-domain generalization remains poorly understood. In this paper, we present a systematic analysis revealing that fine-tuning with LLM-generated data not only improves target task performance but also reduces out-of-domain (OOD) degradation compared to fine-tuning with ground truth data. Through analyzing the data sequence in tasks of various domains, we demonstrate that this enhanced OOD robustness stems from a reduced prevalence of high perplexity tokens in LLM-generated sequences. Following this hypothesis we showed that masking high perplexity tokens in ground truth training data also achieves similar OOD preservation comparable to using LLM-generated data. Extensive experiments across diverse model architectures and scales, including Gemma2-2B, Mistral-7B and Llama3-8B, corroborate the consistency of our findings. To the best of our knowledge, this work provides the first mechanistic explanation for the superior OOD robustness conferred by LLM-generated training data, offering valuable insights for developing more robust fine-tuning strategies.


Detecting the Undetectable: Assessing the Efficacy of Current Spoof Detection Methods Against Seamless Speech Edits

arXiv.org Artificial Intelligence

Neural speech editing advancements have raised concerns about their misuse in spoofing attacks. Traditional partially edited speech corpora primarily focus on cut-and-paste edits, which, while maintaining speaker consistency, often introduce detectable discontinuities. Recent methods, like A\textsuperscript{3}T and Voicebox, improve transitions by leveraging contextual information. To foster spoofing detection research, we introduce the Speech INfilling Edit (SINE) dataset, created with Voicebox. We detailed the process of re-implementing Voicebox training and dataset creation. Subjective evaluations confirm that speech edited using this novel technique is more challenging to detect than conventional cut-and-paste methods. Despite human difficulty, experimental results demonstrate that self-supervised-based detectors can achieve remarkable performance in detection, localization, and generalization across different edit methods. The dataset and related models will be made publicly available.