Goto

Collaborating Authors

 Lütjens, Björn


ClimSim: A large multi-scale dataset for hybrid physics-ML climate emulation

arXiv.org Artificial Intelligence

Modern climate projections lack adequate spatial and temporal resolution due to computational constraints. A consequence is inaccurate and imprecise predictions of critical processes such as storms. Hybrid methods that combine physics with machine learning (ML) have introduced a new generation of higher fidelity climate simulators that can sidestep Moore's Law by outsourcing compute-hungry, short, high-resolution simulations to ML emulators. However, this hybrid ML-physics simulation approach requires domain-specific treatment and has been inaccessible to ML experts because of lack of training data and relevant, easy-to-use workflows. We present ClimSim, the largest-ever dataset designed for hybrid ML-physics research. It comprises multi-scale climate simulations, developed by a consortium of climate scientists and ML researchers. It consists of 5.7 billion pairs of multivariate input and output vectors that isolate the influence of locally-nested, high-resolution, high-fidelity physics on a host climate simulator's macro-scale physical state. The dataset is global in coverage, spans multiple years at high sampling frequency, and is designed such that resulting emulators are compatible with downstream coupling into operational climate simulators. We implement a range of deterministic and stochastic regression baselines to highlight the ML challenges and their scoring.


GEO-Bench: Toward Foundation Models for Earth Monitoring

arXiv.org Artificial Intelligence

Recent progress in self-supervision has shown that pre-training large neural networks on vast amounts of unsupervised data can lead to substantial increases in generalization to downstream tasks. Such models, recently coined foundation models, have been transformational to the field of natural language processing. Variants have also been proposed for image data, but their applicability to remote sensing tasks is limited. To stimulate the development of foundation models for Earth monitoring, we propose a benchmark comprised of six classification and six segmentation tasks, which were carefully curated and adapted to be both relevant to the field and well-suited for model evaluation. We accompany this benchmark with a robust methodology for evaluating models and reporting aggregated results to enable a reliable assessment of progress. Finally, we report results for 20 baselines to gain information about the performance of existing models. We believe that this benchmark will be a driver of progress across a variety of Earth monitoring tasks.


Physically-Consistent Generative Adversarial Networks for Coastal Flood Visualization

arXiv.org Artificial Intelligence

As climate change increases the intensity of natural disasters, society needs better tools for adaptation. Floods, for example, are the most frequent natural disaster, and better tools for flood risk communication could increase the support for flood-resilient infrastructure development. Our work aims to enable more visual communication of large-scale climate impacts via visualizing the output of coastal flood models as satellite imagery. We propose the first deep learning pipeline to ensure physical-consistency in synthetic visual satellite imagery. We advanced a state-of-the-art GAN called pix2pixHD, such that it produces imagery that is physically-consistent with the output of an expert-validated storm surge model (NOAA SLOSH). By evaluating the imagery relative to physics-based flood maps, we find that our proposed framework outperforms baseline models in both physical-consistency and photorealism. We envision our work to be the first step towards a global visualization of how the climate challenge will shape our landscape. Continuing on this path, we show that the proposed pipeline generalizes to visualize reforestation. We also publish a dataset of over 25k labelled image-triplets to study image-to-image translation in Earth observation.


The World as a Graph: Improving El Ni\~no Forecasts with Graph Neural Networks

arXiv.org Machine Learning

Deep learning-based models have recently outperformed state-of-the-art seasonal forecasting models, such as for predicting El Ni\~no-Southern Oscillation (ENSO). However, current deep learning models are based on convolutional neural networks which are difficult to interpret and can fail to model large-scale atmospheric patterns. In comparison, graph neural networks (GNNs) are capable of modeling large-scale spatial dependencies and are more interpretable due to the explicit modeling of information flow through edge connections. We propose the first application of graph neural networks to seasonal forecasting. We design a novel graph connectivity learning module that enables our GNN model to learn large-scale spatial interactions jointly with the actual ENSO forecasting task. Our model, \graphino, outperforms state-of-the-art deep learning-based models for forecasts up to six months ahead. Additionally, we show that our model is more interpretable as it learns sensible connectivity structures that correlate with the ENSO anomaly pattern.


Graph Neural Networks for Improved El Ni\~no Forecasting

arXiv.org Machine Learning

Deep learning-based models have recently outperformed state-of-the-art seasonal forecasting models, such as for predicting El Ni\~no-Southern Oscillation (ENSO). However, current deep learning models are based on convolutional neural networks which are difficult to interpret and can fail to model large-scale atmospheric patterns called teleconnections. Hence, we propose the application of spatiotemporal Graph Neural Networks (GNN) to forecast ENSO at long lead times, finer granularity and improved predictive skill than current state-of-the-art methods. The explicit modeling of information flow via edges may also allow for more interpretable forecasts. Preliminary results are promising and outperform state-of-the art systems for projections 1 and 3 months ahead.


Safe Reinforcement Learning with Model Uncertainty Estimates

arXiv.org Artificial Intelligence

Many current autonomous systems are being designed with a strong reliance on black box predictions from deep neural networks (DNNs). However, DNNs tend to be overconfident in predictions on unseen data and can give unpredictable results for far-from-distribution test data. The importance of predictions that are robust to this distributional shift is evident for safety-critical applications, such as collision avoidance around pedestrians. Measures of model uncertainty can be used to identify unseen data, but the state-of-the-art extraction methods such as Bayesian neural networks are mostly intractable to compute. This paper uses MC-Dropout and Bootstrapping to give computationally tractable and parallelizable uncertainty estimates. The methods are embedded in a Safe Reinforcement Learning framework to form uncertainty-aware navigation around pedestrians. The result is a collision avoidance policy that knows what it does not know and cautiously avoids pedestrians that exhibit unseen behavior. The policy is demonstrated in simulation to be more robust to novel observations and take safer actions than an uncertainty-unaware baseline.