Kvinge, Henry
Machine Learning meets Algebraic Combinatorics: A Suite of Datasets Capturing Research-level Conjecturing Ability in Pure Mathematics
Chau, Herman, Jenne, Helen, Brown, Davis, He, Jesse, Raugas, Mark, Billey, Sara, Kvinge, Henry
With recent dramatic increases in AI system capabilities, there has been growing interest in utilizing machine learning for reasoning-heavy, quantitative tasks, particularly mathematics. While there are many resources capturing mathematics at the high-school, undergraduate, and graduate level, there are far fewer resources available that align with the level of difficulty and open endedness encountered by professional mathematicians working on open problems. To address this, we introduce a new collection of datasets, the Algebraic Combinatorics Dataset Repository (ACD Repo), representing either foundational results or open problems in algebraic combinatorics, a subfield of mathematics that studies discrete structures arising from abstract algebra. Further differentiating our dataset collection is the fact that it aims at the conjecturing process. Each dataset includes an open-ended research-level question and a large collection of examples (up to 10M in some cases) from which conjectures should be generated. We describe all nine datasets, the different ways machine learning models can be applied to them (e.g., training with narrow models followed by interpretability analysis or program synthesis with LLMs), and discuss some of the challenges involved in designing datasets like these.
Machines and Mathematical Mutations: Using GNNs to Characterize Quiver Mutation Classes
He, Jesse, Jenne, Helen, Chau, Herman, Brown, Davis, Raugas, Mark, Billey, Sara, Kvinge, Henry
Machine learning is becoming an increasingly valuable tool in mathematics, enabling one to identify subtle patterns across collections of examples so vast that they would be impossible for a single researcher to feasibly review and analyze. In this work, we use graph neural networks to investigate quiver mutation -- an operation that transforms one quiver (or directed multigraph) into another -- which is central to the theory of cluster algebras with deep connections to geometry, topology, and physics. In the study of cluster algebras, the question of mutation equivalence is of fundamental concern: given two quivers, can one efficiently determine if one quiver can be transformed into the other through a sequence of mutations? Currently, this question has only been resolved in specific cases. In this paper, we use graph neural networks and AI explainability techniques to discover mutation equivalence criteria for the previously unknown case of quivers of type $\tilde{D}_n$. Along the way, we also show that even without explicit training to do so, our model captures structure within its hidden representation that allows us to reconstruct known criteria from type $D_n$, adding to the growing evidence that modern machine learning models are capable of learning abstract and general rules from mathematical data.
Generalist Multimodal AI: A Review of Architectures, Challenges and Opportunities
Munikoti, Sai, Stewart, Ian, Horawalavithana, Sameera, Kvinge, Henry, Emerson, Tegan, Thompson, Sandra E, Pazdernik, Karl
Multimodal models are expected to be a critical component to future advances in artificial intelligence. This field is starting to grow rapidly with a surge of new design elements motivated by the success of foundation models in natural language processing (NLP) and vision. It is widely hoped that further extending the foundation models to multiple modalities (e.g., text, image, video, sensor, time series, graph, etc.) will ultimately lead to generalist multimodal models, i.e. one model across different data modalities and tasks. However, there is little research that systematically analyzes recent multimodal models (particularly the ones that work beyond text and vision) with respect to the underling architecture proposed. Therefore, this work provides a fresh perspective on generalist multimodal models (GMMs) via a novel architecture and training configuration specific taxonomy. This includes factors such as Unifiability, Modularity, and Adaptability that are pertinent and essential to the wide adoption and application of GMMs. The review further highlights key challenges and prospects for the field and guide the researchers into the new advancements.
ICML 2023 Topological Deep Learning Challenge : Design and Results
Papillon, Mathilde, Hajij, Mustafa, Jenne, Helen, Mathe, Johan, Myers, Audun, Papamarkou, Theodore, Birdal, Tolga, Dey, Tamal, Doster, Tim, Emerson, Tegan, Gopalakrishnan, Gurusankar, Govil, Devendra, Guzmรกn-Sรกenz, Aldo, Kvinge, Henry, Livesay, Neal, Mukherjee, Soham, Samaga, Shreyas N., Ramamurthy, Karthikeyan Natesan, Karri, Maneel Reddy, Rosen, Paul, Sanborn, Sophia, Walters, Robin, Agerberg, Jens, Barikbin, Sadrodin, Battiloro, Claudio, Bazhenov, Gleb, Bernardez, Guillermo, Brent, Aiden, Escalera, Sergio, Fiorellino, Simone, Gavrilev, Dmitrii, Hassanin, Mohammed, Hรคusner, Paul, Gardaa, Odin Hoff, Khamis, Abdelwahed, Lecha, Manuel, Magai, German, Malygina, Tatiana, Ballester, Rubรฉn, Nadimpalli, Kalyan, Nikitin, Alexander, Rabinowitz, Abraham, Salatiello, Alessandro, Scardapane, Simone, Scofano, Luca, Singh, Suraj, Sjรถlund, Jens, Snopov, Pavel, Spinelli, Indro, Telyatnikov, Lev, Testa, Lucia, Yang, Maosheng, Yue, Yixiao, Zaghen, Olga, Zia, Ali, Miolane, Nina
This paper presents the computational challenge on topological deep learning that was hosted within the ICML 2023 Workshop on Topology and Geometry in Machine Learning. The competition asked participants to provide open-source implementations of topological neural networks from the literature by contributing to the python packages TopoNetX (data processing) and TopoModelX (deep learning). The challenge attracted twenty-eight qualifying submissions in its two-month duration. This paper describes the design of the challenge and summarizes its main findings.
Attributing Learned Concepts in Neural Networks to Training Data
Konz, Nicholas, Godfrey, Charles, Shapiro, Madelyn, Tu, Jonathan, Kvinge, Henry, Brown, Davis
By now there is substantial evidence that deep learning models learn certain human-interpretable features as part of their internal representations of data. As having the right (or wrong) concepts is critical to trustworthy machine learning systems, it is natural to ask which inputs from the model's original training set were most important for learning a concept at a given layer. To answer this, we combine data attribution methods with methods for probing the concepts learned by a model. Training network and probe ensembles for two concept datasets on a range of network layers, we use the recently developed TRAK method for large-scale data attribution. We find some evidence for convergence, where removing the 10,000 top attributing images for a concept and retraining the model does not change the location of the concept in the network nor the probing sparsity of the concept. This suggests that rather than being highly dependent on a few specific examples, the features that inform the development of a concept are spread in a more diffuse manner across its exemplars, implying robustness in concept formation.
Haldane Bundles: A Dataset for Learning to Predict the Chern Number of Line Bundles on the Torus
Tipton, Cody, Coda, Elizabeth, Brown, Davis, Bittner, Alyson, Lee, Jung, Jorgenson, Grayson, Emerson, Tegan, Kvinge, Henry
Characteristic classes, which are abstract topological invariants associated with vector bundles, have become an important notion in modern physics with surprising real-world consequences. As a representative example, the incredible properties of topological insulators, which are insulators in their bulk but conductors on their surface, can be completely characterized by a specific characteristic class associated with their electronic band structure, the first Chern class. Given their importance to next generation computing and the computational challenge of calculating them using first-principles approaches, there is a need to develop machine learning approaches to predict the characteristic classes associated with a material system. To aid in this program we introduce the {\emph{Haldane bundle dataset}}, which consists of synthetically generated complex line bundles on the $2$-torus. We envision this dataset, which is not as challenging as noisy and sparsely measured real-world datasets but (as we show) still difficult for off-the-shelf architectures, to be a testing ground for architectures that incorporate the rich topological and geometric priors underlying characteristic classes.
Internal Representations of Vision Models Through the Lens of Frames on Data Manifolds
Kvinge, Henry, Jorgenson, Grayson, Brown, Davis, Godfrey, Charles, Emerson, Tegan
While the last five years have seen considerable progress in understanding the internal representations of deep learning models, many questions remain. This is especially true when trying to understand the impact of model design choices, such as model architecture or training algorithm, on hidden representation geometry and dynamics. In this work we present a new approach to studying such representations inspired by the idea of a frame on the tangent bundle of a manifold. Our construction, which we call a neural frame, is formed by assembling a set of vectors representing specific types of perturbations of a data point, for example infinitesimal augmentations, noise perturbations, or perturbations produced by a generative model, and studying how these change as they pass through a network. Using neural frames, we make observations about the way that models process, layer-by-layer, specific modes of variation within a small neighborhood of a datapoint. Our results provide new perspectives on a number of phenomena, such as the manner in which training with augmentation produces model invariance or the proposed trade-off between adversarial training and model generalization.
Understanding the Inner Workings of Language Models Through Representation Dissimilarity
Brown, Davis, Godfrey, Charles, Konz, Nicholas, Tu, Jonathan, Kvinge, Henry
As language models are applied to an increasing number of real-world applications, understanding their inner workings has become an important issue in model trust, interpretability, and transparency. In this work we show that representation dissimilarity measures, which are functions that measure the extent to which two model's internal representations differ, can be a valuable tool for gaining insight into the mechanics of language models. Among our insights are: (i) an apparent asymmetry in the internal representations of model using SoLU and GeLU activation functions, (ii) evidence that dissimilarity measures can identify and locate generalization properties of models that are invisible via in-distribution test set performance, and (iii) new evaluations of how language model features vary as width and depth are increased. Our results suggest that dissimilarity measures are a promising set of tools for shedding light on the inner workings of language models.
Testing predictions of representation cost theory with CNNs
Godfrey, Charles, Bishoff, Elise, Mckay, Myles, Brown, Davis, Jorgenson, Grayson, Kvinge, Henry, Byler, Eleanor
It is widely acknowledged that trained convolutional neural networks (CNNs) have different levels of sensitivity to signals of different frequency. In particular, a number of empirical studies have documented CNNs sensitivity to low-frequency signals. In this work we show with theory and experiments that this observed sensitivity is a consequence of the frequency distribution of natural images, which is known to have most of its power concentrated in low-to-mid frequencies. Our theoretical analysis relies on representations of the layers of a CNN in frequency space, an idea that has previously been used to accelerate computations and study implicit bias of network training algorithms, but to the best of our knowledge has not been applied in the domain of model robustness.
Edit at your own risk: evaluating the robustness of edited models to distribution shifts
Brown, Davis, Godfrey, Charles, Nizinski, Cody, Tu, Jonathan, Kvinge, Henry
The current trend toward ever-larger models makes standard retraining procedures an ever-more expensive burden. For this reason, there is growing interest in model editing, which enables computationally inexpensive, interpretable, post-hoc model modifications. While many model editing techniques are promising, research on the properties of edited models is largely limited to evaluation of validation accuracy. The robustness of edited models is an important and yet mostly unexplored topic. In this paper, we employ recently developed techniques from the field of deep learning robustness to investigate both how model editing affects the general robustness of a model, as well as the robustness of the specific behavior targeted by the edit. We find that edits tend to reduce general robustness, but that the degree of degradation depends on the editing algorithm and layers chosen. Motivated by these observations we introduce a new model editing algorithm, 1-layer interpolation (1-LI), which uses weight-space interpolation to navigate the trade-off between editing task accuracy and general robustness.