Plotting

 Kruk, Sandor


Machine learning-driven Anomaly Detection and Forecasting for Euclid Space Telescope Operations

arXiv.org Artificial Intelligence

State-of-the-art space science missions increasingly rely on automation due to spacecraft complexity and the costs of human oversight. The high volume of data, including scientific and telemetry data, makes manual inspection challenging. Machine learning offers significant potential to meet these demands. The Euclid space telescope, in its survey phase since February 2024, exemplifies this shift. Euclid's success depends on accurate monitoring and interpretation of housekeeping telemetry and science-derived data. Thousands of telemetry parameters, monitored as time series, may or may not impact the quality of scientific data. These parameters have complex interdependencies, often due to physical relationships (e.g., proximity of temperature sensors). Optimising science operations requires careful anomaly detection and identification of hidden parameter states. Moreover, understanding the interactions between known anomalies and physical quantities is crucial yet complex, as related parameters may display anomalies with varied timing and intensity. We address these challenges by analysing temperature anomalies in Euclid's telemetry from February to August 2024, focusing on eleven temperature parameters and 35 covariates. We use a predictive XGBoost model to forecast temperatures based on historical values, detecting anomalies as deviations from predictions. A second XGBoost model predicts anomalies from covariates, capturing their relationships to temperature anomalies. We identify the top three anomalies per parameter and analyse their interactions with covariates using SHAP (Shapley Additive Explanations), enabling rapid, automated analysis of complex parameter relationships. Our method demonstrates how machine learning can enhance telemetry monitoring, offering scalable solutions for other missions with similar data challenges.


XAMI -- A Benchmark Dataset for Artefact Detection in XMM-Newton Optical Images

arXiv.org Artificial Intelligence

Reflected or scattered light produce artefacts in astronomical observations that can negatively impact the scientific study. Hence, automated detection of these artefacts is highly beneficial, especially with the increasing amounts of data gathered. Machine learning methods are well-suited to this problem, but currently there is a lack of annotated data to train such approaches to detect artefacts in astronomical observations. In this work, we present a dataset of images from the XMM-Newton space telescope Optical Monitoring camera showing different types of artefacts. We hand-annotated a sample of 1000 images with artefacts which we use to train automated ML methods. We further demonstrate techniques tailored for accurate detection and masking of artefacts using instance segmentation. We adopt a hybrid approach, combining knowledge from both convolutional neural networks (CNNs) and transformer-based models and use their advantages in segmentation. The presented method and dataset will advance artefact detection in astronomical observations by providing a reproducible baseline. All code and data are made available (https://github.com/ESA-Datalabs/XAMI-model and https://github.com/ESA-Datalabs/XAMI-dataset).


Designing an Evaluation Framework for Large Language Models in Astronomy Research

arXiv.org Artificial Intelligence

Large Language Models (LLMs) are shifting how scientific research is done. It is imperative to understand how researchers interact with these models and how scientific sub-communities like astronomy might benefit from them. However, there is currently no standard for evaluating the use of LLMs in astronomy. Therefore, we present the experimental design for an evaluation study on how astronomy researchers interact with LLMs. We deploy a Slack chatbot that can answer queries from users via Retrieval-Augmented Generation (RAG); these responses are grounded in astronomy papers from arXiv. We record and anonymize user questions and chatbot answers, user upvotes and downvotes to LLM responses, user feedback to the LLM, and retrieved documents and similarity scores with the query. Our data collection method will enable future dynamic evaluations of LLM tools for astronomy.


AstroLLaMA-Chat: Scaling AstroLLaMA with Conversational and Diverse Datasets

arXiv.org Artificial Intelligence

To enhance this, we introduce AstroLLaMA-Chat, an advanced version of AstroLLaMA. This new iteration broadens the training scope to include introductions and conclusions of papers, alongside abstracts, as these sections are often rich in pivotal information for question-answering tasks. We initiated by downloading all papers up to July 2023, including all the files that come with a submission to arXiv. The data has been further refined for optimal operability, retaining only files with ".tex" suffixes. Through a multi-stage process, and utilising a comprehensive regex matching process, the extraction of the targeted sections was performed. Given the diverse LaTeX formatting standards, approximately 90% of the samples remained post-processing. Subsequently, we removed specific formatting patterns, comments, and superfluous symbols like newlines to ensure the readability of the training data. Further, we have fine-tuned AstroLLaMA-Chat on a domain-specific dialogue dataset. To generate Question-Answer pairs, we engaged GPT-4 (OpenAI 2023) to formulate pertinent questions from paragraphs within 300,000 arXiv papers, with GPT-4 also tasked with answering these questions by retrieving context-relevant information.


AstroLLaMA: Towards Specialized Foundation Models in Astronomy

arXiv.org Artificial Intelligence

Large language models excel in many human-language tasks but often falter in highly specialized domains like scholarly astronomy. To bridge this gap, we introduce AstroLLaMA, a 7-billion-parameter model fine-tuned from LLaMA-2 using over 300,000 astronomy abstracts from arXiv. Optimized for traditional causal language modeling, AstroLLaMA achieves a 30% lower perplexity than Llama-2, showing marked domain adaptation. Our model generates more insightful and scientifically relevant text completions and embedding extraction than state-of-the-arts foundation models despite having significantly fewer parameters. AstroLLaMA serves as a robust, domain-specific model with broad fine-tuning potential. Its public release aims to spur astronomy-focused research, including automatic paper summarization and conversational agent development.


Harnessing the Power of Adversarial Prompting and Large Language Models for Robust Hypothesis Generation in Astronomy

arXiv.org Artificial Intelligence

This study investigates the application of Large Language Models (LLMs), specifically GPT-4, within Astronomy. We employ in-context prompting, supplying the model with up to 1000 papers from the NASA Astrophysics Data System, to explore the extent to which performance can be improved by immersing the model in domain-specific literature. Our findings point towards a substantial boost in hypothesis generation when using in-context prompting, a benefit that is further accentuated by adversarial prompting. We illustrate how adversarial prompting empowers GPT-4 to extract essential details from a vast knowledge base to produce meaningful hypotheses, signaling an innovative step towards employing LLMs for scientific research in Astronomy.