Goto

Collaborating Authors

 Kramer-Bottiglio, Rebecca


Impact-resistant, autonomous robots inspired by tensegrity architecture

arXiv.org Artificial Intelligence

Future robots will navigate perilous, remote environments with resilience and autonomy. Researchers have proposed building robots with compliant bodies to enhance robustness, but this approach often sacrifices the autonomous capabilities expected of rigid robots. Inspired by tensegrity architecture, we introduce a tensegrity robot -- a hybrid robot made from rigid struts and elastic tendons -- that demonstrates the advantages of compliance and the autonomy necessary for task performance. This robot boasts impact resistance and autonomy in a field environment and additional advances in the state of the art, including surviving harsh impacts from drops (at least 5.7 m), accurately reconstructing its shape and orientation using on-board sensors, achieving high locomotion speeds (18 bar lengths per minute), and climbing the steepest incline of any tensegrity robot (28 degrees). We characterize the robot's locomotion on unstructured terrain, showcase its autonomous capabilities in navigation tasks, and demonstrate its robustness by rolling it off a cliff.


Data-driven Modeling of Granular Chains with Modern Koopman Theory

arXiv.org Artificial Intelligence

Externally driven dense packings of particles can exhibit nonlinear wave phenomena that are not described by effective medium theory or linearized approximate models. Such nontrivial wave responses can be exploited to design sound-focusing/scrambling devices, acoustic filters, and analog computational units. At high amplitude vibrations or low confinement pressures, the effect of nonlinear particle contacts becomes increasingly noticeable, and the interplay of nonlinearity, disorder, and discreteness in the system gives rise to remarkable properties, particularly useful in designing structures with exotic properties. In this paper, we build upon the data-driven methods in dynamical system analysis and show that the Koopman spectral theory can be applied to granular crystals, enabling their phase space analysis beyond the linearizable regime and without recourse to any approximations considered in the previous works. We show that a deep neural network can map the dynamics to a latent space where the essential nonlinearity of the granular system unfolds into a high-dimensional linear space. As a proof of concept, we use data from numerical simulations of a two-particle system and evaluate the accuracy of the trajectory predictions under various initial conditions. By incorporating data from experimental measurements, our proposed framework can directly capture the underlying dynamics without imposing any assumptions about the physics model. Spectral analysis of the trained surrogate system can help bridge the gap between the simulation results and the physical realization of granular crystals and facilitate the inverse design of materials with desired behaviors.


Learning Differentiable Tensegrity Dynamics using Graph Neural Networks

arXiv.org Artificial Intelligence

Tensegrity robots are composed of rigid struts and flexible cables. They constitute an emerging class of hybrid rigid-soft robotic systems and are promising systems for a wide array of applications, ranging from locomotion to assembly. They are difficult to control and model accurately, however, due to their compliance and high number of degrees of freedom. To address this issue, prior work has introduced a differentiable physics engine designed for tensegrity robots based on first principles. In contrast, this work proposes the use of graph neural networks to model contact dynamics over a graph representation of tensegrity robots, which leverages their natural graph-like cable connectivity between end caps of rigid rods. This learned simulator can accurately model 3-bar and 6-bar tensegrity robot dynamics in simulation-to-simulation experiments where MuJoCo is used as the ground truth. It can also achieve higher accuracy than the previous differentiable engine for a real 3-bar tensegrity robot, for which the robot state is only partially observable. When compared against direct applications of recent mesh-based graph neural network simulators, the proposed approach is computationally more efficient, both for training and inference, while achieving higher accuracy. Code and data are available at https://github.com/nchen9191/tensegrity_gnn_simulator_public


Gradient-based Design of Computational Granular Crystals

arXiv.org Artificial Intelligence

There is growing interest in engineering unconventional computing devices that leverage the intrinsic dynamics of physical substrates to perform fast and energy-efficient computations. Granular metamaterials are one such substrate that has emerged as a promising platform for building wave-based information processing devices with the potential to integrate sensing, actuation, and computation. Their high-dimensional and nonlinear dynamics result in nontrivial and sometimes counter-intuitive wave responses that can be shaped by the material properties, geometry, and configuration of individual grains. Such highly tunable rich dynamics can be utilized for mechanical computing in special-purpose applications. However, there are currently no general frameworks for the inverse design of large-scale granular materials. Here, we build upon the similarity between the spatiotemporal dynamics of wave propagation in material and the computational dynamics of Recurrent Neural Networks to develop a gradient-based optimization framework for harmonically driven granular crystals. We showcase how our framework can be utilized to design basic logic gates where mechanical vibrations carry the information at predetermined frequencies. We compare our design methodology with classic gradient-free methods and find that our approach discovers higher-performing configurations with less computational effort. Our findings show that a gradient-based optimization method can greatly expand the design space of metamaterials and provide the opportunity to systematically traverse the parameter space to find materials with the desired functionalities.


Real2Sim2Real Transfer for Control of Cable-driven Robots via a Differentiable Physics Engine

arXiv.org Artificial Intelligence

Tensegrity robots, composed of rigid rods and flexible cables, exhibit high strength-to-weight ratios and significant deformations, which enable them to navigate unstructured terrains and survive harsh impacts. They are hard to control, however, due to high dimensionality, complex dynamics, and a coupled architecture. Physics-based simulation is a promising avenue for developing locomotion policies that can be transferred to real robots. Nevertheless, modeling tensegrity robots is a complex task due to a substantial sim2real gap. To address this issue, this paper describes a Real2Sim2Real (R2S2R) strategy for tensegrity robots. This strategy is based on a differentiable physics engine that can be trained given limited data from a real robot. These data include offline measurements of physical properties, such as mass and geometry for various robot components, and the observation of a trajectory using a random control policy. With the data from the real robot, the engine can be iteratively refined and used to discover locomotion policies that are directly transferable to the real robot. Beyond the R2S2R pipeline, key contributions of this work include computing non-zero gradients at contact points, a loss function for matching tensegrity locomotion gaits, and a trajectory segmentation technique that avoids conflicts in gradient evaluation during training. Multiple iterations of the R2S2R process are demonstrated and evaluated on a real 3-bar tensegrity robot.


Universal Mechanical Polycomputation in Granular Matter

arXiv.org Artificial Intelligence

Unconventional computing devices are increasingly of interest as they can operate in environments hostile to silicon-based electronics, or compute in ways that traditional electronics cannot. Mechanical computers, wherein information processing is a material property emerging from the interaction of components with the environment, are one such class of devices. This information processing can be manifested in various physical substrates, one of which is granular matter. In a granular assembly, vibration can be treated as the information-bearing mode. This can be exploited to realize "polycomputing": materials can be evolved such that a single grain within them can report the result of multiple logical operations simultaneously at different frequencies, without recourse to quantum effects. Here, we demonstrate the evolution of a material in which one grain acts simultaneously as two different NAND gates at two different frequencies. NAND gates are of interest as any logical operations can be built from them. Moreover, they are nonlinear thus demonstrating a step toward general-purpose, computationally dense mechanical computers. Polycomputation was found to be distributed across each evolved material, suggesting the material's robustness. With recent advances in material sciences, hardware realization of these materials may eventually provide devices that challenge the computational density of traditional computers.


A soft robot that adapts to environments through shape change

arXiv.org Artificial Intelligence

Nature provides several examples of organisms that utilize shape change as a means of operating in challenging, dynamic environments. For example, the spider Araneus Rechenbergi [1, 2] and the caterpillar of the Mother-of-Pearl Moth (Pleurotya ruralis) [3] transition from walking gaits to rolling in an attempt to escape predation. Across larger time scales, caterpillar-tobutterfly metamorphosis enables land to air transitions, while mobile to sessile metamorphosis, as observed in sea squirts, is accompanied by radical morphological change. Inspired by such change, engineers have created caterpillar-like rolling [4], modular [5, 6, 7], tensegrity [8, 9], plant-like growing [10], and origami [11, 12] robots that are capable of some degree of shape change. However, progress toward robots which dynamically adapt their resting shape to attain different modes of locomotion is still limited. Further, design of such robots and their controllers is still a manually intensive process. Despite the growing recognition of the importance of morphology and embodiment on enabling intelligent behavior in robots [13], most previous studies have approached the challenge of operating in multiple environments primarily through the design of appropriate control strategies.


Scale invariant robot behavior with fractals

arXiv.org Artificial Intelligence

Robots deployed at orders of magnitude different size scales, and that retain the same desired behavior at any of those scales, would greatly expand the environments in which the robots could operate. However it is currently not known whether such robots exist, and, if they do, how to design them. Since self similar structures in nature often exhibit self similar behavior at different scales, we hypothesize that there may exist robot designs that have the same property. Here we demonstrate that this is indeed the case for some, but not all, modular soft robots: there are robot designs that exhibit a desired behavior at a small size scale, and if copies of that robot are attached together to realize the same design at higher scales, those larger robots exhibit similar behavior. We show how to find such designs in simulation using an evolutionary algorithm. Further, when fractal attachment is not assumed and attachment geometries must thus be evolved along with the design of the base robot unit, scale invariant behavior is not achieved, demonstrating that structural self similarity, when combined with appropriate designs, is a useful path to realizing scale invariant robot behavior. We validate our findings by demonstrating successful transferal of self similar structure and behavior to pneumatically-controlled soft robots. Finally, we show that biobots can spontaneously exhibit self similar attachment geometries, thereby suggesting that self similar behavior via self similar structure may be realizable across a wide range of robot platforms in future.


Automated shapeshifting for function recovery in damaged robots

arXiv.org Artificial Intelligence

A robot's mechanical parts routinely wear out from normal functioning and can be lost to injury. For autonomous robots operating in isolated or hostile environments, repair from a human operator is often not possible. Thus, much work has sought to automate damage recovery in robots. However, every case reported in the literature to date has accepted the damaged mechanical structure as fixed, and focused on learning new ways to control it. Here we show for the first time a robot that automatically recovers from unexpected damage by deforming its resting mechanical structure without changing its control policy. We found that, especially in the case of "deep insult", such as removal of all four of the robot's legs, the damaged machine evolves shape changes that not only recover the original level of function (locomotion) as before, but can in fact surpass the original level of performance (speed). This suggests that shape change, instead of control readaptation, may be a better method to recover function after damage in some cases.