Kirov, Christo
XTREME-UP: A User-Centric Scarce-Data Benchmark for Under-Represented Languages
Ruder, Sebastian, Clark, Jonathan H., Gutkin, Alexander, Kale, Mihir, Ma, Min, Nicosia, Massimo, Rijhwani, Shruti, Riley, Parker, Sarr, Jean-Michel A., Wang, Xinyi, Wieting, John, Gupta, Nitish, Katanova, Anna, Kirov, Christo, Dickinson, Dana L., Roark, Brian, Samanta, Bidisha, Tao, Connie, Adelani, David I., Axelrod, Vera, Caswell, Isaac, Cherry, Colin, Garrette, Dan, Ingle, Reeve, Johnson, Melvin, Panteleev, Dmitry, Talukdar, Partha
Data scarcity is a crucial issue for the development of highly multilingual NLP systems. Yet for many under-represented languages (ULs) -- languages for which NLP re-search is particularly far behind in meeting user needs -- it is feasible to annotate small amounts of data. Motivated by this, we propose XTREME-UP, a benchmark defined by: its focus on the scarce-data scenario rather than zero-shot; its focus on user-centric tasks -- tasks with broad adoption by speakers of high-resource languages; and its focus on under-represented languages where this scarce-data scenario tends to be most realistic. XTREME-UP evaluates the capabilities of language models across 88 under-represented languages over 9 key user-centric technologies including ASR, OCR, MT, and information access tasks that are of general utility. We create new datasets for OCR, autocomplete, semantic parsing, and transliteration, and build on and refine existing datasets for other tasks. XTREME-UP provides methodology for evaluating many modeling scenarios including text-only, multi-modal (vision, audio, and text),supervised parameter tuning, and in-context learning. We evaluate commonly used models on the benchmark. We release all code and scripts to train and evaluate models
Spelling convention sensitivity in neural language models
Nielsen, Elizabeth, Kirov, Christo, Roark, Brian
We examine whether large neural language models, trained on very large collections of varied English text, learn the potentially long-distance dependency of British versus American spelling conventions, i.e., whether spelling is consistently one or the other within model-generated strings. In contrast to long-distance dependencies in non-surface underlying structure (e.g., syntax), spelling consistency is easier to measure both in LMs and the text corpora used to train them, which can provide additional insight into certain observed model behaviors. Using a set of probe words unique to either British or American English, we first establish that training corpora exhibit substantial (though not total) consistency. A large T5 language model does appear to internalize this consistency, though only with respect to observed lexical items (not nonce words with British/American spelling patterns). We further experiment with correcting for biases in the training data by fine-tuning T5 on synthetic data that has been debiased, and find that finetuned T5 remains only somewhat sensitive to spelling consistency. Further experiments show GPT2 to be similarly limited.