Kimura, Tomoyoshi
Foundation Models for CPS-IoT: Opportunities and Challenges
Baris, Ozan, Chen, Yizhuo, Dong, Gaofeng, Han, Liying, Kimura, Tomoyoshi, Quan, Pengrui, Wang, Ruijie, Wang, Tianchen, Abdelzaher, Tarek, Bergés, Mario, Liang, Paul Pu, Srivastava, Mani
Methods from machine learning (ML) have transformed the implementation of Perception-Cognition-Communication-Action loops in Cyber-Physical Systems (CPS) and the Internet of Things (IoT), replacing mechanistic and basic statistical models with those derived from data. However, the first generation of ML approaches, which depend on supervised learning with annotated data to create task-specific models, faces significant limitations in scaling to the diverse sensor modalities, deployment configurations, application tasks, and operating dynamics characterizing real-world CPS-IoT systems. The success of task-agnostic foundation models (FMs), including multimodal large language models (LLMs), in addressing similar challenges across natural language, computer vision, and human speech has generated considerable enthusiasm for and exploration of FMs and LLMs as flexible building blocks in CPS-IoT analytics pipelines, promising to reduce the need for costly task-specific engineering. Nonetheless, a significant gap persists between the current capabilities of FMs and LLMs in the CPS-IoT domain and the requirements they must meet to be viable for CPS-IoT applications. In this paper, we analyze and characterize this gap through a thorough examination of the state of the art and our research, which extends beyond it in various dimensions. Based on the results of our analysis and research, we identify essential desiderata that CPS-IoT domain-specific FMs and LLMs must satisfy to bridge this gap. We also propose actions by CPS-IoT researchers to collaborate in developing key community resources necessary for establishing FMs and LLMs as foundational tools for the next generation of CPS-IoT systems.
MMBind: Unleashing the Potential of Distributed and Heterogeneous Data for Multimodal Learning in IoT
Ouyang, Xiaomin, Wu, Jason, Kimura, Tomoyoshi, Lin, Yihan, Verma, Gunjan, Abdelzaher, Tarek, Srivastava, Mani
Multimodal sensing systems are increasingly prevalent in various real-world applications. Most existing multimodal learning approaches heavily rely on training with a large amount of complete multimodal data. However, such a setting is impractical in real-world IoT sensing applications where data is typically collected by distributed nodes with heterogeneous data modalities, and is also rarely labeled. In this paper, we propose MMBind, a new framework for multimodal learning on distributed and heterogeneous IoT data. The key idea of MMBind is to construct a pseudo-paired multimodal dataset for model training by binding data from disparate sources and incomplete modalities through a sufficiently descriptive shared modality. We demonstrate that data of different modalities observing similar events, even captured at different times and locations, can be effectively used for multimodal training. Moreover, we propose an adaptive multimodal learning architecture capable of training models with heterogeneous modality combinations, coupled with a weighted contrastive learning approach to handle domain shifts among disparate data. Evaluations on ten real-world multimodal datasets highlight that MMBind outperforms state-of-the-art baselines under varying data incompleteness and domain shift, and holds promise for advancing multimodal foundation model training in IoT applications.
On the Efficiency and Robustness of Vibration-based Foundation Models for IoT Sensing: A Case Study
Kimura, Tomoyoshi, Li, Jinyang, Wang, Tianshi, Kara, Denizhan, Chen, Yizhuo, Hu, Yigong, Wang, Ruijie, Wigness, Maggie, Liu, Shengzhong, Srivastava, Mani, Diggavi, Suhas, Abdelzaher, Tarek
This paper demonstrates the potential of vibration-based Foundation Models (FMs), pre-trained with unlabeled sensing data, to improve the robustness of run-time inference in (a class of) IoT applications. A case study is presented featuring a vehicle classification application using acoustic and seismic sensing. The work is motivated by the success of foundation models in the areas of natural language processing and computer vision, leading to generalizations of the FM concept to other domains as well, where significant amounts of unlabeled data exist that can be used for self-supervised pre-training. One such domain is IoT applications. Foundation models for selected sensing modalities in the IoT domain can be pre-trained in an environment-agnostic fashion using available unlabeled sensor data and then fine-tuned to the deployment at hand using a small amount of labeled data. The paper shows that the pre-training/fine-tuning approach improves the robustness of downstream inference and facilitates adaptation to different environmental conditions. More specifically, we present a case study in a real-world setting to evaluate a simple (vibration-based) FM-like model, called FOCAL, demonstrating its superior robustness and adaptation, compared to conventional supervised deep neural networks (DNNs). We also demonstrate its superior convergence over supervised solutions. Our findings highlight the advantages of vibration-based FMs (and FM-inspired selfsupervised models in general) in terms of inference robustness, runtime efficiency, and model adaptation (via fine-tuning) in resource-limited IoT settings.
FOCAL: Contrastive Learning for Multimodal Time-Series Sensing Signals in Factorized Orthogonal Latent Space
Liu, Shengzhong, Kimura, Tomoyoshi, Liu, Dongxin, Wang, Ruijie, Li, Jinyang, Diggavi, Suhas, Srivastava, Mani, Abdelzaher, Tarek
This paper proposes a novel contrastive learning framework, called FOCAL, for extracting comprehensive features from multimodal time-series sensing signals through self-supervised training. Existing multimodal contrastive frameworks mostly rely on the shared information between sensory modalities, but do not explicitly consider the exclusive modality information that could be critical to understanding the underlying sensing physics. Besides, contrastive frameworks for time series have not handled the temporal information locality appropriately. FOCAL solves these challenges by making the following contributions: First, given multimodal time series, it encodes each modality into a factorized latent space consisting of shared features and private features that are orthogonal to each other. The shared space emphasizes feature patterns consistent across sensory modalities through a modal-matching objective. In contrast, the private space extracts modality-exclusive information through a transformation-invariant objective. Second, we propose a temporal structural constraint for modality features, such that the average distance between temporally neighboring samples is no larger than that of temporally distant samples. Extensive evaluations are performed on four multimodal sensing datasets with two backbone encoders and two classifiers to demonstrate the superiority of FOCAL. It consistently outperforms the state-of-the-art baselines in downstream tasks with a clear margin, under different ratios of available labels. The code and self-collected dataset are available at https://github.com/tomoyoshki/focal.