Plotting

 Kantor, George


Towards Autonomous Crop Monitoring: Inserting Sensors in Cluttered Environments

arXiv.org Artificial Intelligence

Abstract-- We present a contact-based phenotyping robot platform that can autonomously insert nitrate sensors into cornstalks to proactively monitor macronutrient levels in crops. This task is challenging because inserting such sensors requires sub-centimeter precision in an environment which contains high levels of clutter, lighting variation, and occlusion. To address these challenges, we develop a robust perceptionaction pipeline to detect and grasp stalks, and create a custom robot gripper which mechanically aligns the sensor before inserting it into the stalk. Through experimental validation on 48 unique stalks in a cornfield in Iowa, we demonstrate our platform's capability of detecting a stalk with 94% success, grasping a stalk with 90% success, and inserting a sensor with 60% success. In addition to developing an autonomous phenotyping research platform, we share key challenges and insights obtained from deployment in the field. With the development of artificial intelligence in computer vision and robotics, the agricultural sector is poised to implement precision agriculture methods to enhance crop production efficiency and minimize environmental footprint [1]. Figure 1: Robot inserting sensors into cornstalks to monitor plant nitrate concentration in Curtiss Farm, Iowa.


Autonomous Apple Fruitlet Sizing with Next Best View Planning

arXiv.org Artificial Intelligence

In this paper, we present a next-best-view planning approach to autonomously size apple fruitlets. State-of-the-art viewpoint planners in agriculture are designed to size large and more sparsely populated fruit. They rely on lower resolution maps and sizing methods that do not generalize to smaller fruit sizes. To overcome these limitations, our method combines viewpoint sampling around semantically labeled regions of interest, along with an attention-guided information gain mechanism to more strategically select viewpoints that target the small fruits' volume. Additionally, we integrate a dual-map representation of the environment that is able to both speed up expensive ray casting operations and maintain the high occupancy resolution required to informatively plan around the fruit. When sizing, a robust estimation and graph clustering approach is introduced to associate fruit detections across images. Through simulated experiments, we demonstrate that our viewpoint planner improves sizing accuracy compared to state of the art and ablations. We also provide quantitative results on data collected by a real robotic system in the field.


3D Skeletonization of Complex Grapevines for Robotic Pruning

arXiv.org Artificial Intelligence

Robotic pruning of dormant grapevines is an area of active research in order to promote vine balance and grape quality, but so far robotic efforts have largely focused on planar, simplified vines not representative of commercial vineyards. This paper aims to advance the robotic perception capabilities necessary for pruning in denser and more complex vine structures by extending plant skeletonization techniques. The proposed pipeline generates skeletal grapevine models that have lower reprojection error and higher connectivity than baseline algorithms. We also show how 3D and skeletal information enables prediction accuracy of pruning weight for dense vines surpassing prior work, where pruning weight is an important vine metric influencing pruning site selection.


3D Reconstruction-Based Seed Counting of Sorghum Panicles for Agricultural Inspection

arXiv.org Artificial Intelligence

In this paper, we present a method for creating high-quality 3D models of sorghum panicles for phenotyping in breeding experiments. This is achieved with a novel reconstruction approach that uses seeds as semantic landmarks in both 2D and 3D. To evaluate the performance, we develop a new metric for assessing the quality of reconstructed point clouds without having a ground-truth point cloud. Finally, a counting method is presented where the density of seed centers in the 3D model allows 2D counts from multiple views to be effectively combined into a whole-panicle count. We demonstrate that using this method to estimate seed count and weight for sorghum outperforms count extrapolation from 2D images, an approach used in most state of the art methods for seeds and grains of comparable size.


Adaptive Auxiliary Task Weighting for Reinforcement Learning

Neural Information Processing Systems

Reinforcement learning is known to be sample inefficient, preventing its application to many real-world problems, especially with high dimensional observations like images. Transferring knowledge from other auxiliary tasks is a powerful tool for improving the learning efficiency. However, the usage of auxiliary tasks has been limited so far due to the difficulty in selecting and combining different auxiliary tasks. In this work, we propose a principled online learning algorithm that dynamically combines different auxiliary tasks to speed up training for reinforcement learning. Our method is based on the idea that auxiliary tasks should provide gradient directions that, in the long term, help to decrease the loss of the main task.


Active Learning with Gaussian Processes for High Throughput Phenotyping

arXiv.org Machine Learning

A looming question that must be solved before robotic plant phenotyping capabilities can have significant impact to crop improvement programs is scalability. High Throughput Phenotyping (HTP) uses robotic technologies to analyze crops in order to determine species with favorable traits, however, the current practices rely on exhaustive coverage and data collection from the entire crop field being monitored under the breeding experiment. This works well in relatively small agricultural fields but can not be scaled to the larger ones, thus limiting the progress of genetics research. In this work, we propose an active learning algorithm to enable an autonomous system to collect the most informative samples in order to accurately learn the distribution of phenotypes in the field with the help of a Gaussian Process model. We demonstrate the superior performance of our proposed algorithm compared to the current practices on sorghum phenotype data collection.


A Single-Step Maximum A Posteriori Update for Bearing-Only SLAM

AAAI Conferences

This paper presents a novel recursive maximum a posteriori update for the Kalman formulation of undelayed bearing-only SLAM. The estimation update step is cast as an optimization problem for which we can prove the global minimum is reachable via a bidirectional search using Gauss-Newton's method along a one-dimensional manifold. While the filter is designed for mapping just one landmark, it is easily extended to full-scale multiple-landmark SLAM. We provide this extension via a formulation of bearing-only FastSLAM. With experiments, we demonstrate accurate and convergent estimation in situations where an EKF solution would diverge.