Kannan, Anitha
Rare Disease Differential Diagnosis with Large Language Models at Scale: From Abdominal Actinomycosis to Wilson's Disease
Schumacher, Elliot, Naik, Dhruv, Kannan, Anitha
Large language models (LLMs) have demonstrated impressive capabilities in disease diagnosis. However, their effectiveness in identifying rarer diseases, which are inherently more challenging to diagnose, remains an open question. Rare disease performance is critical with the increasing use of LLMs in healthcare settings. This is especially true if a primary care physician needs to make a rarer prognosis from only a patient conversation so that they can take the appropriate next step. To that end, several clinical decision support systems are designed to support providers in rare disease identification. Yet their utility is limited due to their lack of knowledge of common disorders and difficulty of use. In this paper, we propose RareScale to combine the knowledge LLMs with expert systems. We use jointly use an expert system and LLM to simulate rare disease chats. This data is used to train a rare disease candidate predictor model. Candidates from this smaller model are then used as additional inputs to black-box LLM to make the final differential diagnosis. Thus, RareScale allows for a balance between rare and common diagnoses. We present results on over 575 rare diseases, beginning with Abdominal Actinomycosis and ending with Wilson's Disease. Our approach significantly improves the baseline performance of black-box LLMs by over 17% in Top-5 accuracy. We also find that our candidate generation performance is high (e.g. 88.8% on gpt-4o generated chats).
Extrinsically-Focused Evaluation of Omissions in Medical Summarization
Schumacher, Elliot, Rosenthal, Daniel, Naik, Dhruv, Nair, Varun, Price, Luladay, Tso, Geoffrey, Kannan, Anitha
Large language models (LLMs) have shown promise in safety-critical applications such as healthcare, yet the ability to quantify performance has lagged. An example of this challenge is in evaluating a summary of the patient's medical record. A resulting summary can enable the provider to get a high-level overview of the patient's health status quickly. Yet, a summary that omits important facts about the patient's record can produce a misleading picture. This can lead to negative consequences on medical decision-making. We propose MED-OMIT as a metric to explore this challenge. We focus on using provider-patient history conversations to generate a subjective (a summary of the patient's history) as a case study. We begin by discretizing facts from the dialogue and identifying which are omitted from the subjective. To determine which facts are clinically relevant, we measure the importance of each fact to a simulated differential diagnosis. We compare MED-OMIT's performance to that of clinical experts and find broad agreement We use MED-OMIT to evaluate LLM performance on subjective generation and find some LLMs (gpt-4 and llama-3.1-405b) work well with little effort, while others (e.g. Llama 2) perform worse.
Injecting knowledge into language generation: a case study in auto-charting after-visit care instructions from medical dialogue
Eremeev, Maksim, Valmianski, Ilya, Amatriain, Xavier, Kannan, Anitha
Factual correctness is often the limiting factor in practical applications of natural language generation in high-stakes domains such as healthcare. An essential requirement for maintaining factuality is the ability to deal with rare tokens. This paper focuses on rare tokens that appear in both the source and the reference sequences, and which, when missed during generation, decrease the factual correctness of the output text. For high-stake domains that are also knowledge-rich, we show how to use knowledge to (a) identify which rare tokens that appear in both source and reference are important and (b) uplift their conditional probability. We introduce the ``utilization rate'' that encodes knowledge and serves as a regularizer by maximizing the marginal probability of selected tokens. We present a study in a knowledge-rich domain of healthcare, where we tackle the problem of generating after-visit care instructions based on patient-doctor dialogues. We verify that, in our dataset, specific medical concepts with high utilization rates are underestimated by conventionally trained sequence-to-sequence models. We observe that correcting this with our approach to knowledge injection reduces the uncertainty of the model as well as improves factuality and coherence without negatively impacting fluency.
Generating medically-accurate summaries of patient-provider dialogue: A multi-stage approach using large language models
Nair, Varun, Schumacher, Elliot, Kannan, Anitha
A medical provider's summary of a patient visit serves several critical purposes, including clinical decision-making, facilitating hand-offs between providers, and as a reference for the patient. An effective summary is required to be coherent and accurately capture all the medically relevant information in the dialogue, despite the complexity of patient-generated language. Even minor inaccuracies in visit summaries (for example, summarizing "patient does not have a fever" when a fever is present) can be detrimental to the outcome of care for the patient. This paper tackles the problem of medical conversation summarization by discretizing the task into several smaller dialogue-understanding tasks that are sequentially built upon. First, we identify medical entities and their affirmations within the conversation to serve as building blocks. We study dynamically constructing few-shot prompts for tasks by conditioning on relevant patient information and use GPT-3 as the backbone for our experiments. We also develop GPT-derived summarization metrics to measure performance against reference summaries quantitatively. Both our human evaluation study and metrics for medical correctness show that summaries generated using this approach are clinically accurate and outperform the baseline approach of summarizing the dialog in a zero-shot, single-prompt setting.
CONSCENDI: A Contrastive and Scenario-Guided Distillation Approach to Guardrail Models for Virtual Assistants
Sun, Albert Yu, Nair, Varun, Schumacher, Elliot, Kannan, Anitha
A wave of new task-based virtual assistants has been fueled by increasingly powerful large language models, such as GPT-4. These conversational agents can be customized to serve customer-specific use cases, but ensuring that agent-generated text conforms to designer-specified rules included in prompt instructions alone is challenging. Therefore, chatbot designers often use another model, called a guardrail model, to verify that the agent output aligns with their rules and constraints. We explore using a distillation approach to guardrail models to monitor the output of the first model using training data from GPT-4. We find two crucial steps to our CONSCENDI process: scenario-augmented generation and contrastive training examples. When generating conversational data, we generate a set of rule-breaking scenarios, which enumerate a diverse set of high-level ways a rule can be violated. This scenario-guided approach produces a diverse training set of rule-violating conversations, and it provides chatbot designers greater control over the classification process. We also prompt GPT-4 to also generate contrastive examples by altering conversations with violations into acceptable conversations. This set of borderline, contrastive examples enables the distilled model to learn finer-grained distinctions between what is acceptable and what is not. We find that CONSCENDI results in guardrail models that improve over baselines.
Dialogue-Contextualized Re-ranking for Medical History-Taking
Zhu, Jian, Valmianski, Ilya, Kannan, Anitha
AI-driven medical history-taking is an important component in symptom checking, automated patient intake, triage, and other AI virtual care applications. As historytaking is extremely varied, machine learning models require a significant amount of data to train. To overcome this challenge, existing systems are developed using indirect data or expert knowledge. This leads to a training-inference gap as models are trained on different kinds of data than what they observe at inference time. In this work, we present a two-stage re-ranking approach that helps close the training-inference gap by re-ranking the first-stage question candidates using a dialogue-contextualized model. For this, we propose a new model, global re-ranker, which cross-encodes the dialogue with all questions simultaneously, and compare it with several existing neural baselines. We test both transformer and S4-based language model backbones. We find that relative to the expert system, the best performance is achieved by our proposed global re-ranker with a transformer backbone, resulting in a 30% higher normalized discount cumulative gain (nDCG) and a 77% higher mean average precision (mAP). As part of this work, we also release pre-trained checkpoints for bi-directional and autoregressive S4 models trained on Wikipedia and PubMed data.
DERA: Enhancing Large Language Model Completions with Dialog-Enabled Resolving Agents
Nair, Varun, Schumacher, Elliot, Tso, Geoffrey, Kannan, Anitha
Large language models (LLMs) have emerged as valuable tools for many natural language understanding tasks. In safety-critical applications such as healthcare, the utility of these models is governed by their ability to generate outputs that are factually accurate and complete. In this work, we present dialog-enabled resolving agents (DERA). DERA is a paradigm made possible by the increased conversational abilities of LLMs, namely GPT-4. It provides a simple, interpretable forum for models to communicate feedback and iteratively improve output. We frame our dialog as a discussion between two agent types - a Researcher, who processes information and identifies crucial problem components, and a Decider, who has the autonomy to integrate the Researcher's information and makes judgments on the final output. We test DERA against three clinically-focused tasks. For medical conversation summarization and care plan generation, DERA shows significant improvement over the base GPT-4 performance in both human expert preference evaluations and quantitative metrics. In a new finding, we also show that GPT-4's performance (70%) on an open-ended version of the MedQA question-answering (QA) dataset (Jin et al. 2021, USMLE) is well above the passing level (60%), with DERA showing similar performance. We release the open-ended MEDQA dataset at https://github.com/curai/curai-research/tree/main/DERA.
Transformation-Based Models of Video Sequences
van Amersfoort, Joost, Kannan, Anitha, Ranzato, Marc'Aurelio, Szlam, Arthur, Tran, Du, Chintala, Soumith
In this work we propose a simple unsupervised approach for next frame prediction in video. Instead of directly predicting the pixels in a frame given past frames, we predict the transformations needed for generating the next frame in a sequence, given the transformations of the past frames. This leads to sharper results, while using a smaller prediction model. In order to enable a fair comparison between different video frame prediction models, we also propose a new evaluation protocol. We use generated frames as input to a classifier trained with ground truth sequences. This criterion guarantees that models scoring high are those producing sequences which preserve discriminative features, as opposed to merely penalizing any deviation, plausible or not, from the ground truth. Our proposed approach compares favourably against more sophisticated ones on the UCF-101 data set, while also being more efficient in terms of the number of parameters and computational cost. There has been an increased interest in unsupervised learning of representations from video sequences (Mathieu et al., 2016; Srivastava et al., 2015; Vondrick et al., 2016). A popular formulation of the task is to learn to predict a small number of future frames given the previous K frames; the motivation being that predicting future frames requires understanding how objects interact and what plausible sequences of motion are. These methods directly aim to predict pixel values, with either MSE loss or adversarial loss.
OSLAT: Open Set Label Attention Transformer for Medical Entity Retrieval and Span Extraction
Li, Raymond, Valmianski, Ilya, Deng, Li, Amatriain, Xavier, Kannan, Anitha
Medical entity span extraction and linking are critical steps for many healthcare NLP tasks. Most existing entity extraction methods either have a fixed vocabulary of medical entities or require span annotations. In this paper, we propose a method for linking an open set of entities that does not require any span annotations. Our method, Open Set Label Attention Transformer (OSLAT), uses the label-attention mechanism to learn candidate-entity contextualized text representations. We find that OSLAT can not only link entities but is also able to implicitly learn spans associated with entities. We evaluate OSLAT on two tasks: (1) span extraction trained without explicit span annotations, and (2) entity linking trained without span-level annotation. We test the generalizability of our method by training two separate models on two datasets with low entity overlap and comparing cross-dataset performance.
Adding more data does not always help: A study in medical conversation summarization with PEGASUS
Nair, Varun, Katariya, Namit, Amatriain, Xavier, Valmianski, Ilya, Kannan, Anitha
Medical conversation summarization is integral in capturing information gathered during interactions between patients and physicians. Summarized conversations are used to facilitate patient hand-offs between physicians, and as part of providing care in the future. Summaries, however, can be time-consuming to produce and require domain expertise. Modern pre-trained NLP models such as PEGASUS have emerged as capable alternatives to human summarization, reaching state-of-the-art performance on many summarization benchmarks. However, many downstream tasks still require at least moderately sized datasets to achieve satisfactory performance. In this work we (1) explore the effect of dataset size on transfer learning medical conversation summarization using PEGASUS and (2) evaluate various iterative labeling strategies in the low-data regime, following their success in the classification setting. We find that model performance saturates with increase in dataset size and that the various active-learning strategies evaluated all show equivalent performance consistent with simple dataset size increase. We also find that naive iterative pseudo-labeling is on-par or slightly worse than no pseudo-labeling. Our work sheds light on the successes and challenges of translating low-data regime techniques in classification to medical conversation summarization and helps guides future work in this space. Relevant code available at \url{https://github.com/curai/curai-research/tree/main/medical-summarization-ML4H-2021}.